
Mechanical Approach to Linking Operational
Semantics and Algebraic Semantics for Verilog

using Maude

Huibiao Zhu1, Peng Liu1, Jifeng He1, and Shengchao Qin2

1Shanghai Key Laboratory of Trustworthy Computing
East China Normal University, Shanghai 200062, China

Email: {hbzhu,liup,jifeng}@sei.ecnu.edu.cn
2School of Computing, University of Teesside

Middlesbrough TS1 3BA, UK
Email: s.qin@tees.ac.uk

Abstract. Verilog is a hardware description language (HDL) that has
been standardized and widely used in industry. It contains interesting fea-
tures such as event-driven computation and shared-variable concurrency.
This paper considers how the algebraic semantics links with the opera-
tional semantics for Verilog. Our approach is to apply the equational and
rewriting logic system Maude in exploring the linking theories. Firstly
we present the algebraic semantics for Verilog. We introduce the concept
of head normal form and every program is expressed as a guarded choice
with location status. Secondly we present the strategy of deriving op-
erational semantics from algebraic semantics. Our mechanical approach
using Maude can visually show the head normal form of each program,
as well as the execution steps of a program based on the derivation strat-
egy. Finally we also mechanize the derived operational semantics. The
results mechanized from the second and third exploration indicate that
the transition system of the derived operational semantics is the same as
the one based on the derivation strategy.

1 Introduction

Modern hardware design typically uses a hardware description language (HDL)
to express designs at various levels of abstraction. An HDL is a high level pro-
gramming language with the usual programming constructs such as assignments,
conditionals, iterations, together with the appropriate extensions for real-time,
concurrency and data structures suitable for modelling hardware. Verilog is an
HDL that has been standardized and widely used in industry [9, 10].

Verilog programs can exhibit a rich variety of behaviours, including event-
driven computation, shared-variable concurrency and simulator-based interpre-
tation. Verilog also has real-time features [17], through the time delay statement
and the event-driven computation feature.

The semantics for Verilog is very important because it is widely used in in-
dustry. The denotational semantics [22] has been investigated using Duration

Calculus [19] in order to describe its real-time features. Various operational
semantics have also been studied [5, 6, 11]. Besides the operational and deno-
tational semantics, a set of algebraic laws can also represent the meaning of a
language. These three semantics should provide the same understanding of the
language from different viewpoints and they should be consistent. Therefore, the
linking of these three semantics is a challenging task. Below is the diagram for
linking Verilog semantics.

Denotational Semantics

Algebraic Semantics

Operational Semantics

1
2

5
6

3

4

(1) The aim of this step is to generate a set of algebraic laws. These laws can be
proved via the achievement of the denotational semantics for Verilog [22].

(2) The aim of this step is also to generate a set of algebraic laws. Compared
with step (1), the approach here is based on the operational semantics via
bisimulation [15, 16].

(3) Denotational and operational semantics give the meaning for the same lan-
guage. How can we prove the equivalence and consistency of these two seman-
tics? This step is to derive the denotational semantics from the operational
semantics for Verilog.

(4) This aim of this step is to derive the operational semantics from the deno-
tational semantics for Verilog. This gives another way for considering the
equivalence and consistency of denotational and operational semantics.

(5) Algebraic semantics also represents the meaning of programs. The aim of
this step is to derive the operational semantics from the algebraic semantics.

(6) This step is to derive the denotational semantics back from the algebraic
semantics.

Regarding the above linking work of Verilog semantics. Some of them have
already been achieved (shown as step (1) to (4), and step (6) in the above di-
agram). The algebraic laws for Verilog has been verified via the denotational
semantics in [22]. These algebraic laws can also be validated based on the oper-
ational semantics via bisimulation [6, 11]. Further studies have investigated how
the operational semantics relates with denotational semantics for Verilog [20,
21, 23]. We have already investigated the derivation of denotational semantics
from operational semantics and algebraic semantics for Verilog respectively [21,
23]. We also derived the operational semantics for Verilog from its denotational
semantics [20].

This paper studies how the algebraic semantics for Verilog links with its op-
erational semantics (shown as step (5) in the above diagram). Our approach is

to derive Verilog operational semantics from its algebraic semantics, which can
show that the operational semantics is sound and complete with respect to the
algebraic laws. We apply the mechanical method to support the semantic link-
ing by using the equational and rewriting logic system Maude [1, 2]. Firstly we
present the algebraic semantics for Verilog. We introduce the concept of head
normal form and every program is expressed as a guarded choice with location
status. In order to investigate the parallel expansion laws, a sequence is intro-
duced, which can indicate an instantaneous action is due to which exact parallel
component. Secondly we provide a strategy for deriving operational semantics
from algebraic semantics for Verilog. From this strategy, we can achieve a tran-
sition system (i.e., an operational semantics). Our mechanical approach using
Maude can visually show the head normal form of each program, as well as the
execution steps of a program based on the derivation strategy. Finally we also
mechanize the derived operational semantics. The results mechanized from the
second and third exploration indicate that the transition system of the derived
operational semantics is the same as the one based on the derivation strategy.

The remainder of this paper is organized as follows. Section 2 introduces
Hardware Description Language Verilog and, as well as Equation and Rewriting
Logic system Maude. Section 3 presents a set of algebraic laws, where every
program can be represented as a guarded choice with location status. In sec-
tion 4, we introduce the concept of head normal form and we encode the head
normal form of each program in Maude. Section 5 investigates the derivation
of the operational semantics from the algebraic semantics. We mechanize the
derivation strategy in Maude system. Every program can be executed based on
the derivation strategy. For the derived operational semantics, we also explore
its mechanical approach. The mechanical approaches from the derivation strat-
egy and the derived operational semantics support the claim that the transition
system of the derived operational semantics is the same as the one based on
the derivation strategy. Section 6 concludes the paper and provides some future
work.

2 Hardware Description Language Verilog and Equational
and Rewriting Logic System Maude

2.1 Hardware Description Language Verilog

The Verilog Hardware Description Language (Verilog HDL) became as an IEEE
standard in 1995 as IEEE std 1364-1995 [9, 10]. It has many interesting features,
such as event-driven computation, shared-variable concurrency and simulator-
based interpretation. The syntax of Verilog is expressed in a way that is closer to
the syntax of a traditional programming language. Verilog contains the following
categories of syntactic elements and is similar to the one introduced by Gordon
[3, 4].

P ::= PC | P ; P | if b then P else P | while b do P

| c P | P ‖ P
where:

• PC ranges over primitive commands.

PC ::= x := e | Skip | @(x := e), where

x := e is the assignment, which is executed exactly once. Skip behaves the
same as x := x. x := e (also Skip) is not considered as an atomic action,
which is a fragment of an atomic action (i.e., a statement of an atomic
action).

On the other hand, @(x := e) is considered as an atomic action, which is
called as atomic assignment.

• P ; Q is the sequential composition.

• P ‖ Q is the parallel composition, where its mechanism is an interleaving
shared-variable concurrency model. The parallel composition can not only
be at the outside level, but also can appear at any place.

• c P denotes a timing control statement, and c is a time control used for
scheduling.

c ::= #n | @(g)

where, g ::= η | g or g | g and g | g and ¬g
η ::= v |↑ v |↓ v, n ≥ 1

(1) Time delay #n suspends the execution for exactly n time units, where
n is treated as an integer in this paper.

(2) An event guard @(↑ v) is fired by the increase of the value of v, whereas
@(↓ v) is triggered by a decrease in v. Any change of v awakes the guard
@(v).

(3) @(g1 or g2) becomes enabled if @(g1) or @(g2) is fired.

(4) @(g1 and g2) is triggered if both @(g1) and @(g2) are awakened simul-
taneously.

(5) @(g1 and ¬g2) becomes fired if @(g2) remains idle and @(g1) is awakened.

2.2 Equational and Rewriting Logic System Maude

Rewriting logic has been introduced as a general semantic and logical framework
[12–14, 18]. Many applications are implemented in the Maude system [1] and have
revealed inspiring results.

In Maude, the fundamental unit can be a functional module or a system mod-
ule. They can be declared by the following syntax: fmod NAME is ... endfm (or

mod NAME is ... endm) . Here the dots denote the declarations of importing op-
tions, sorts, subsorts, operations, equations and rules (only in system modules).
First, we take the Peano notation of natural numbers as an example to show the
structure of functional modules.

fmod PEANO-NATURAL is including BOOL .

sorts NzNat Nat .
subsort NzNat < Nat .
op 0 : -> Nat [ctor] .
op s(_) : Nat -> NzNat [ctor] .
op _+_ : Nat Nat -> Nat .
vars N M : Nat .
eq 0 + N = N .
eq s(M) + N = s(M + N) .
op _>_ : Nat Nat -> Bool .
eq s(N) > 0 = true .
ceq s(N) > s(M) = true if N > M .
eq N > M = false [owise] .

endfm

Defined modules can be reused, as the precluded module BOOL is imported
into the PEANO-NATURAL. Two sorts NzNat and Nat are declared to represen-
t non-zero natural numbers and natural numbers, and NzNat is declared as a
subsort of Nat. ops are keywords to define operators on defined sorts. Here, 0
is defined with no operands thus it can be treated as a constant of sort Nat.
s(_) is an operator to define the successor of a natural number, so the result
is of sort NzNat. We associate the attribute ctor (abbreviated for constructor)
with these two operators, which means that they are the fundamental operations
for defining the canonical forms of the resulting sort. However the operator +

is not defined as a constructor, because it is not necessary for defining natural
numbers. Attributes such as assoc and comm can also be attached to ops, repre-
senting that the operator satisfies associative and commutative laws. Variables
are declared using the keyword var(s) with the sort following behind the name.
Equations are defined as simplification rules towards a canonical form. They
are declared using the keywords eq (i.e., equation) and ceq (i.e., conditional
equation). We can use the command red(uce) to compute the canonical form
simplified by equations. When typing in Maude red s(0) + s(s(0)), the result
will be s(s(s(0))).

In system modules, rewriting rules are declared by keyword rl (crl for con-
ditional one). Rewriting rules reflect nondeterministic and concurrent transitions
of systems. Suppose we define a list of natural numbers as following:
mod MY-LIST is including PEANO-NATURAL .

sorts Elt List .
subsort Nat < Elt < List .
op null : -> List [ctor] .
op _ _ : List List -> List [ctor assoc id: null] .
vars A B : Elt .
crl [swap] : A B => B A if A > B .

endm

The rule swap will make the smaller numbers swap to the left. Any part of the
list satisfying this rule will do the transition concurrently. Using the command
rew(rite) we can see the result of the transitions. rew s(s(0)) s(s(s(0)))

s(0) 0 shows the result as 0 s(0) s(s(0)) s(s(s(0))).

As rules in system modules can be nondeterministic and concurrent, rewrite
command only shows one of the possible multiple results. Maude provides search
and show path commands to display all possible results. We can see how to use
them in later sections.

3 Generating Algebraic Semantics

3.1 Pre-emption Point and Atomic Action

In Verilog, x := e, Skip and @(x := e) are considered as instantaneous actions.
We first introduce the concept of pre-emption point. Only at a pre-emption point
does the scheduler make a decision whether the environment gets a chance to
make its contribution or the program itself continues to execute.

A pre-emption point can be one of the cases: (1) the two points before and
after a timing control statement; (2) the two points before and after a parallel
process; (3) for a process that is a component of a parallel process, the two
points before and after the process are also pre-emption points. For a sequence
of instantaneous actions, if its beginning and ending points are two pre-emption
points and there are no pre-emption points appearing inside the sequence, then
this sequence is called an atomic action. x := e is not an atomic action. It is a
fragment of an atomic action, whereas @(x := e) is an atomic action.

At each pre-emption point for a process, both the process itself and its en-
vironment can get the control to do its atomic action. The scheduling between
them is non-deterministic. If an instantaneous action is at the beginning of an
atomic action, this instantaneous action can be scheduled to execute immediate-
ly. Alternatively, the environment can also perform its instantaneous behaviours.
After the first instantaneous action in an atomic action terminates, the following
actions in the atomic action must be executed sequentially and uninterruptedly.
This indicates that the execution of an atomic action is uninterrupted. Regard-
ing the triggering case, a guard can be triggered by its atomic action that has
just completed. If there are no cases like this, the guard waits for its environment
to trigger it. At some particular points of execution, if the process itself and the
environment cannot do any instantaneous action, then time may advance.

Example 3.1

(1) Consider the program P1 =df @(↑ x) ; x := 0 ; x := x+ 1 ; y := x+ 1 ; #1.
There are four pre-emption points; i.e., the points before and after the event
guard @(↑ x) and the two points before and after time delay #1.

(2) Consider the program P ‖ Q when P =df (x := 0 ; y := x+ 1 ; z := x+ 1)
and Q =df x := 2. For process P , there are two pre-emption points; i.e., the
point before the assignment x := 0 and the point after z := x + 1. For process
Q, the pre-emption points are the points just before and after x := 2.

(3) Consider the program P =df @(↑ x) ; x := 1 ; y := x+ 1 ; @(x := 0) ; z :=
x+ 1 ; #1. The assignment guard @(x := 0) not only assigns a value to x, but
also indicates that the previous instantaneous sequence forms an atomic action
and itself is an atomic action. This means “x := 1 ; y := x + 1”, “@(x := 0)”
and “z := x+ 1” are three atomic actions inside program P . �

3.2 Locality of Instantaneous Action and Guarded Choice with
Location Status

In order to model the scheduling policy for parallel processes, we use a thread
sequence seq to index the currently active sub-process in a nested parallel com-

position. A thread sequence can be 〈〉 or a non-empty thread sequence, where 〈〉
indicates that there is only one thread for the action that has just been executed.

Example 3.2 Let P =df x := 0 ; #1 ; x := 1 ; @(↑ x). The instantaneous
actions x := 0 and x := 1 are both due to process P itself. Therefore, the se-
quence for indexing their contribution in P is 〈〉. �

Example 3.3 Let P = I ‖ J , I = E ‖ F , J = G ‖ H,

E = A ‖ B, H = C ‖ D.

where, the outside structure of processes A, B, F , G, C and D is not the parallel
composition. Below is the graph that illustrates the structure of process P .

P

J

H

2

1 2

1 21 2

A B C D

F G

I
1

21

E

We assign a label for each edge. If it is the left edge of a process, the label is
1, otherwise the label is 2. Now we consider the sequence that can index the
instantaneous action of parallel process P . If P ’s instantaneous action is due to
process A, then the sequence that indexes the exact component of P ’s contri-
bution is the sequence 〈1〉〈1〉〈1〉1. If P ’s instantaneous action is due to process
B, then the sequence that indexes the exact component of P ’s contribution is
the sequence 〈1〉〈1〉〈2〉. Similarly, if P ’s instantaneous action is due to process
F , then the sequence that indexes the exact component of P ’s contribution is
the sequence 〈2〉〈2〉〈2〉. �

Now we introduce the concept of location status for a program, which is one
of the following three forms:

(1) index, which can be 〈〉 or a non-empty thread sequence. It indicates an
instantaneous action is due to which exact component of a parallel process.

(2) 0, which indicates the termination of an atomic action.

(3) null, which indicates a process is at a state where the process itself and its
environment can both have a chance to perform its instantaneous action.

For example, in the above example (i.e., Example 3.3), let A = x := 1 ; x :=
x+ 1 ; x := x+ 2. If x := 1 is scheduled and completes its execution, the loca-
tion status for the remaining process of P is 〈1〉〈1〉〈1〉. This means that it will
continue to execute the two subsequent statements x := x+ 1 and x := x+ 2.

The introduction of guarded choice is to support the parallel expansion laws.

1 〈1〉〈1〉〈1〉 stands for 〈1, 1, 1〉.

Guarded choice can be formalized with location status (i.e., tag), as defined be-
low.

Definition 3.3

(1) h (P, tag) is a guarded component if it can be one of the forms below. Here,
b is a Boolean condition and index can be 〈〉 or a non-empty thread sequence.

b&(x := e) (P, index), b&(x := e) (P, 0), @(g) (P, null), #1 (P, null)

(2) []{h1 (P1, tag1), . . . , hn (Pn, tagn)} is a guarded choice if every element
hi (Pi, tagi) is a guarded component. �

For guarded component “h (P, tag)”, if h is executed (or fired), the subse-
quent process is P and it is at the location status tag. Programs can be rep-
resented in the form of a guarded choice. For this aim, the guarded choice can
only have five types:

(1) []i∈I{bi&(xi := ei) (Pi, tagi)}
(2) []i∈I{@(ηi) (Pi, null)}
(3) []{#1 (P, null)}
(4) []i∈I{bi&(xi := ei) (Pi, tagi)} [] []j∈J{@(ηj) (Qj , null)}
(5) []i∈I{@(ηi) (Pi, null)} [] {#1 (Q, null)}

The first type of guarded choice is composed of a set of assignment compo-
nents, where the second type of guarded choice is only composed of a set of event
guard components. The third type is composed of one time-delay component.
The fourth type of guarded choice is composed of a set of assignment compo-
nents and a set of event guard components. The fifth type of guarded choice is
composed of a set of event guard components and a time delay component.

When mechanizing in Maude, we implement b&(x := e) (P, index) and
b&(x := e) (P, 0) as “GComponent1”, Similarly, @(g) (P, null) and #1 (P, null)
are implemented as “GComponent2” and “GComponent3” respectively. All the
guarded components are expressed as type “GComponent”. Below is the detailed
definition of guarded components in Maude.

fmod GUARDED-COMPONENT is pr VERILOG-PROGRAM .
pr CONFIG .

sorts GComponent1 GComponent2 GComponent3 GComponent .
subsort GComponent1 GComponent2 GComponent3 < GComponent .

sorts AssignmentGuard GuardPostfix GuardPostfix1 GuardPostfix2
GuardPostfix3 .

subsort GuardPostfix1 GuardPostfix2 GuardPostfix3 < GuardPostfix .

op &() : BoolExp Assignment -> AssignmentGuard [ctor] .
op ‘(, ‘) : Program Index -> GuardPostfix1 [ctor] .
op ‘(, ‘) : Program EndPoint -> GuardPostfix2 [ctor] .
op ‘(, ‘) : Program Null -> GuardPostfix3 [ctor] .

op : AssignmentGuard GuardPostfix1 -> GComponent1 [ctor] .
op : AssignmentGuard GuardPostfix2 -> GComponent1 [ctor] .
op : EventGuard GuardPostfix3 -> GComponent2 [ctor] .
op : TimeControl GuardPostfix3 -> GComponent3 [ctor] .

endfm

GComponents are the key components of guarded choices. Based on the three

GComponents, we can define the guarded choices, which we call HealthyGC.

subsort HGCType1 HGCType2 HGCType3 HGCType4 HGCType5 < HealthyGC .

op { } : GComponent1 -> HGCType1 [ctor] .
op { } : GComponent2 -> HGCType2 [ctor] .
op { } : GComponent3 -> HGCType3 [ctor] .
op [] : HGCType1 HGCType1 -> HGCType1 [ctor] .
op [] : HGCType2 HGCType2 -> HGCType2 [ctor] .
op [] : HGCType1 HGCType2 -> HGCType4 [ctor] .
op [] : HGCType2 HGCType3 -> HGCType5 [ctor] .

In the above definitions, HealthyGC is defined as five subsorts, which are
declared as sorts HGCType1, · · · , HGCType5, representing the five types of guard-
ed choices respectively. HGCType1 and HGCType2 are composed of GComponent1
and GComponent2 respectively, separated by []. HGCType3 is composed of a s-
ingle GComponent3. HGCType4 is concatenated by HGCType1 and HGCType2, and
HGCType5 is concatenated by HGCType2 and HGCType3.

3.3 Generating Algebraic Laws

Now we study the expansion laws for parallel composition, which is useful in
deriving operational semantics from algebraic semantics. Based on the mecha-
nism of parallel composition for Verilog, we summarize that there are five typical
parallel expansion forms, described as comp1, comp2, · · · , and comp5, shown be-
low. The whole set of parallel expansion laws is reflected in the definition of head
normal form for parallel composition in the next section. We use the notation
P =tag Q to stand for (P, tag) = (Q, tag), indicating that process P and Q are
equivalent at location status tag. The notation (P, tag) stands for the behaviour
of program P at location status tag.

First we consider the case that one parallel component is in the form of as-
signment guarded choice. In this case, for a parallel process, no matter which
form another parallel component is in, any assignment can be scheduled. The
location status of the remaining process after the scheduled assignment should
be re-calculated shown in the “par1” function2. This case can be expressed in
“comp1”, which is defined recursively.

For example, assume P =null []i∈I{bi&(xi := ei) (Pi, tagi)} and

Q be any process.

Then, []i∈I{bi&(xi := ei) par1(Pi, Q, 1, tagi))} is one part of the parallel expan-
sion of P ‖ Q due to the initial assignments of P .

Now we consider the case that one parallel component is in the form of
event-guarded choice. For a parallel process, we assume that another parallel

2 par1(P,Q, i, tag) =df



(ε, 0) if P = ε and Q = ε
(ε ‖ Q, 0) if P = ε and Q 6= ε and i = 1
(P ‖ ε, 0) if P 6= ε and Q = ε and i = 2
(P ‖ Q, 0) if P 6= ε and tag = 0 and i = 1
(P ‖ Q, 0) if Q 6= ε and tag = 0 and i = 2
(P ‖ Q, 〈1〉̂tag) if P 6= ε and tag 6= 0 and i = 1
(P ‖ Q, 〈2〉̂tag) if Q 6= ε and tag 6= 0 and i = 2

component does not have event-guard initially. For this case, if an event guard
is fired, the remaining process of the parallel process is the parallel composition
of the remaining process of the first component and the second parallel compo-
nent. This case can be expressed using “comp2”. Meanwhile, comp2 can also be
applied to the case that the first parallel component is in the form of time delay
component.

For example, assume Q =null []j∈J{@(ηj) (Qj , null)} and

P does not have event-guard initially.

Then, []j∈J{@(ηj) par(P,Qj)}3 is one part of the parallel expansion of P ‖ Q
due to the initial event guard firing of Q.

Now we consider the case that both of the two parallel components are in
the form of event-guarded choice. There are several types of the triggered cases.
If one guard from one parallel part is triggered and all the guards from anoth-
er parallel part cannot be triggered, the behaviour after the triggered case is
the parallel composition of the subsequent process of one parallel part after the
triggered guard with another parallel part. This can be defined in “comp3” and
“comp4” recursively. On the other hand, if two guards from different parallel
parts are triggered simultaneously, the behaviour after this type of triggered
case is the parallel composition of the subsequent processes, after two triggered
guards from each parallel part. This can be defined in “comp5” recursively.

For example, Assume P =null []i∈I{@(ηi) (Pi, null)} and

Q =null []j∈J{@(ξj) (Qj , null)}
Then

[]i∈I{@(ηi and ¬ξ) par(Pi, Q)} (1)

and []j∈J{@(ξj and ¬η) par(P,Qj)} (2)

and []i∈I∧j∈J{@(ηi and ξj) par(Pi, Qj)} (3)

are the three firing cases for P ‖ Q. Here η = ori∈I{ηi} and ξ = orj∈J{ξi}.
comp3, comp4 and comp5 stand for the above three firing cases (1), (2) and (3)
respectively.

Below is the detailed description of comp1, comp2, · · · , and comp5 in Maude.

op comp1(, ,) : HGCType1 Program Index -> HGCType1 .
eq comp1({b &(x := e)(P1,tag1)},Q,<1>) = {b &(x := e)par1(P1,Q,<1>,tag1)} .
eq comp1({b &(x := e)(Q1,tag1)},P,<2>) = {b &(x := e)par1(P,Q1,<2>,tag1)} .
eq comp1({h1 Post1} [] hgc’,P,i) = comp1({h1 Post1},P,i) []

comp1(hgc’,P,i) .

op comp2(, ,) : HealthyGC Program Index -> HealthyGC .
eq comp2({@(g)(P1,tag1)},Q,<1>) = {@(g)(par(P1,Q),tag1)} .
eq comp2({@(g)(Q1,tag1)},P,<2>) = {@(g)(par(P,Q1),tag1)} .
eq comp2({# 1(P1,tag1)},Q,<1>) = {# 1(par(P1,Q),tag1)} .

3 par(P,Q) =df

{
(ε, null) ifP = ε and Q = ε
(P ‖ Q, null) otherwise

eq comp2({# 1(Q1,tag1)},P,<2>) = {# 1(par(P,Q1),tag1)} .
eq comp2({h1 Post1} [] hgc’,P,i) = comp2({h1 Post1},P,i) []

comp2(hgc’,P,i) .

op comp3(, ,) : HGCType2 HGCType2 Program -> HGCType2 .
eq comp3({@(g1)(P1,null)}, hgct2, Q) = {@(g1 and ∼ guard(hgct2))

(par(P1,Q),null)} .
eq comp3({@(g1)(P1,null)} [] hgct2’, hgct2, Q) =

comp3({@(g1)(P1,null)},hgct2,Q) [] comp3(hgct2’,hgct2,Q) .

op comp4(, ,) : HGCType2 HGCType2 Program -> HGCType2 .
eq comp4(hgct2, {@(g1)(Q1,null)}, P) = {@(g1 and ∼ guard(hgct2))

(par(P,Q1),null)} .
eq comp4(hgct2, {@(g1)(Q1,null)} [] hgct2’, P) =

comp4(hgct2,{@(g1)(Q1,null)},P) [] comp4(hgct2,hgct2’,P) .

op comp5(,) : HGCType2 HGCType2 -> HGCType2 .
eq comp5({@(g1)(P1,null)},{@(g2)(Q1,null)}) = {@(g1 and g2)

(par(P1,Q1),null)} .
eq comp5({@(g1)(P1,null)},{@(g2)(Q1,null)} [] hgct2) =
comp5({@(g1)(P1,null)},{@(g2)(Q1,null)}) [] comp5({@(g1)(P1,null)},hgct2) .
eq comp5({@(g1)(P1,null)} [] hgct2,hgct2’) =

comp5({@(g1)(P1,null)},hgct2’) [] comp5(hgct2,hgct2’) .

All these five definitions are used to compute the components of parallel ex-
pansions of two processes. In order to compute the remaining process after the
corresponding guard of the parallel expansion, the process not being scheduled
will be added as a parameter to the computation.

4 Generating Head Normal Form

In order to support the derivation of operational semantics from algebraic se-
mantics, we introduce the concept of head normal form. For program P , if its
location status is tag, we use the notation HF (P, tag) to stand for the head
normal form of process P at the location status tag.

The head normal form of HF (P, tag) is to make one step forward expansion
for program P at the location status tag. For parallel program P , the parallel
expansion laws can help to calculate the head normal form HF (P, tag). As the
operational semantics is also to make one step forward transition, the head
normal form can support to derive the operational semantics.

4.1 Sequential Constructs
For sequential constructs, its initial location status can be null, 〈〉 and 0. Below
are the definitions of the head normal form of sequential constructs at the loca-
tion status tag.

eq HF(x := e,tag) = ({t &(x := e)(nil,<>)},tag) .
eq HF(Skip,tag) = ({t &(Skip)(nil,<>)},tag) .
eq HF(@(x := e),tag) = ({t &(x := e)(nil,0)},tag) .
eq HF(@(g),tag) = ({@(g)(nil,null)},tag) .
eq HF(# 1,tag) = ({# 1(nil,null)},tag) .
eq HF(# n,tag) = ({# 1(# (n - 1),null)},tag) .
ceq HF(P ; Q,tag) = (seq(T,Q),tag) if (T,tag) := HF(P,tag) .
ceq HF(P ; Q,tag) = (seq(T,Q),tag) if (T,tag) := HF(P,tag) .
ceq HF(if b then P else Q,tag) = ({b &(Skip)(P,<>)} [] {∼ b &(Skip)(Q,<>},tag) .
ceq HF(while b do P,tag) = ({b &(Skip)(P ; while b do P,<>)} []

{∼ b &(Skip)(nil,<>)},tag) .

The first line defines the head normal form of x := e. Here “t” stands for true
and “nil” stands for the empty process ε. After its execution, the location status
is 〈〉. On the other hand, the third line defines the head normal form of assign-
ment guard @(x := e). After its execution, the location status is 0, indicating
the completion of an atomic action.

4.2 Parallel Composition

For parallel process P ‖ Q, its location status can be null, 0 and seq. Firstly we
consider the head normal form of P ‖ Q at the location status null.

There are five types of guarded choice. We first consider the case that two
parallel components of a parallel process are of the first three types. Their head
normal forms are defined based on comp1, comp2, · · · , comp5.

ceq HF(P || Q,null) = (comp1(hgct11,Q,<1>) [] comp1(hgct12,P,<2>) , null)
if (hgct11,null) := HF(P,null) /\ (hgct12,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp1(hgct1,Q,<1>) [] comp2(hgct2,P,<2>) , null)
if (hgct1,null) := HF(P,null) /\ (hgct2,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp1(hgct1,Q,<1>) , null)
if (hgct1,null) := HF(P,null) /\ (hgct3,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp3(hgct21,hgct22,Q) [] comp4(hgct21,hgct22,P) []
comp5(hgct21,hgct22), null)

if (hgct21,null) := HF(P,null) /\ (hgct22,null) := HF(Q,null) .

ceq HF(P || Q,null) = (comp2(hgct2,Q,<1>) [] comp2(hgct3,P,<2>), null)
if (hgct2,null) := HF(P,null) /\ (hgct3,null) := HF(Q,null) .

ceq HF(P || Q,null) = ({# 1(par(R1,R2),null)}, null)
if ({# 1(R1,null)},null) := HF(P,null) /\ ({# 1(R2,null)},null) := HF(Q,null) .

In the above definitions, we use the first case to explain our definition. The
head normal forms of P and Q at the location status null are expressed as
hgct11 and hgct12 respectively, and they are both of the first type of guard-
ed choice. Hence, “comp1(hgct11,Q,<1>)[]comp1(hgct12,P,<2>)” is the head
normal form of P ‖ Q at the location status null, indicating that the assign-
ments in P and Q can both be scheduled first and the location status after the
execution of the corresponding assignment is calculated.

If a process is in the form of the fourth type of guarded choice (or the fifth
type of guarded choice), it can be composed in parallel with any process (i.e.,
in the form of any type of guarded choice). The head normal form of the corre-
sponding parallel process at location status null can be defined similarly. Below
is the case that both of the parallel components are of the fourth type of guarded
choice.

ceq HF(P || Q,null) = (comp1(hgct11,Q,<1>) [] comp1(hgct12,P,<2>) []
comp3(hgct21,hgct22,Q) [] comp4(hgct21,hgct22,P) []
comp5(hgct21,hgct22),null)

if (hgct11[]hgct21,null) := HF(P,null) /\ (hgct12[]hgct22,null) := HF(Q,null) .

The above analysis considered the generating of head normal form for a par-
allel process at the location status null. Now we consider other cases for the
location status of a parallel process. The first four ceqs below explore the case
that one parallel part is at the state of the execution of an instantaneous action.

ceq HF(P || Q,<1> ^ index) = (comp1({b &(x := e)(P1,index)},Q,<1>), <1> ^ index)
if ({b &(x := e)(P1,index)},index) := HF(P,index) .

ceq HF(Q || P,<2> ^ index) = (comp1({b &(x := e)(P1,index)},Q,<2>), <2> ^ index)
if ({b &(x := e)(P1,index)},index) := HF(P,index) .

ceq HF(P || Q,<1> ^ index) = (comp1({b &(x := e)(P1,0)},Q,<1>), <1> ^ index)
if ({b &(x := e)(P1,0)},index) := HF(P,index) .

ceq HF(Q || P,<2> ^ index) = (comp1({b &(x := e)(P1,0)},Q,<2>), <2> ^ index)
if ({b &(x := e)(P1,0)},index) := HF(P,index) .

ceq HF(P || Q,index) = (T,index) if (T,null) := HF(P || Q,null) .

ceq HF(P || Q,0) = (T,0) if (T,null) := HF(P || Q,null) .

In the above definitions, the first and second case models the situation that a
process continues to execute the next assignment in an atomic action. For paral-
lel process P ‖ Q, the first case models the execution of next assignment which
is contributed by process P , whereas the second case models the execution of
next assignment which is due to Q. Now we explain the first case further. For
process P at location status index, after the execution of the next assignment,
the location status is still index. Then, for parallel process, it will execute the
same next assignment contributed by P and the location status is expressed as
“<1>^index”.

Example 4.1 Let P = ((x := x+1 ; @(↑ y)) ‖ y := y+1) ‖ (#1 ; y := y+1).
Now we consider the head normal form of process P at the location state null.

For process P , two assignments x := x+1 and y := y+1 in (x := x+1 ; @(↑
y)) ‖ y := y + 1 can have chances to be scheduled. Therefore, if x := x + 1 is
scheduled, the remaining process is (@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1)
and the corresponding location status is 〈1〉〈1〉.

On the other hand, for process P , if y := y + 1 in (x := x + 1 ; @(↑ y)) ‖
y := y + 1 is scheduled, the remaining process is (x := x + 1 ; @(↑ y)) ‖
(#1 ; y := y+1). As this assignment is the last statement of parallel composition
(x := x+ 1 ; @(↑ y)) ‖ y := y+ 1, the location status is 0 after the execution of
this assignment.

Using the command red(uce) provided by Maude, we can compute the head
normal form of the example program,

reduce in HEAD-NORM-FORM :

({t & (x := x+ 1) ((@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , 〈1〉〈1〉)}
[] {t & (y := y + 1) ((x := x+ 1 ; @(↑ y)) ‖ (#1 ; y := y + 1) , 0)}

, null)

5 Generating Operational Semantics from Algebraic
Semantics

5.1 Transition Types

The transitions for Verilog are of the form C
β−→ C ′, where C and C ′ are

configurations describing the states of an executing mechanism before and after
a step respectively. Here we use β to represent the transition type. There are
three types of configurations:

〈P, σ, ∅〉 〈P, σ, σ′, 1, seq〉 〈P, σ, σ′, 0〉
where:

(1) The first component P is a program text representing the program that
remains to be executed.

(2) The second component σ in 〈P, σ, ∅〉 stands for the initial state, which can
be regarded as the initial state of the atomic action that appears at the
beginning of P . The second component σ in other configurations stands for
the initial state of an atomic action that is currently being executed.

(3) The third component σ′ (σ′ 6= ∅) models the accumulation of the contribu-
tion of instantaneous actions in an atomic action. If the third component is
∅, it means the previous atomic action ends and the new atomic action has
not been scheduled.

(4) If the third component is not empty, a control flag j should be supplied in
the configuration as the fourth element. “j = 0” indicates that the current
atomic action ends, where “j = 1” indicates that current atomic action is
still executing.

(5) In order to model the scheduling policy for parallel processes, a thread se-
quence seq is supplied in the configuration if the third element is not empty
(for explanations, see section 3.2), which is used to index the currently ac-
tive sub-process in a nested parallel composition. Here, seq can be 〈〉 or a
non-empty thread sequence.

The transition rules for Verilog programs can be grouped into the following three

types: (1) Instantaneous transition C −→ C ′; (2) Event transition C
〈σ,σ′〉−→ C ′;

(3) Time advance transition C
1−→ C ′. Below are the detailed descriptions:

1. Instantaneous transition
T1 A process can perform its first instantaneous action of an atomic action.

〈P, σ, ∅〉 −→ 〈P ′, σ, σ′, 1, seq〉
T2 A process can continue its following instantaneous action in an atomic

action.
〈P, σ, σ′, 1, seq〉 −→ 〈P ′, σ, σ′′, 1, seq〉

T3 A process completes an instantaneous section.
〈P, σ, σ′, 1, seq〉 −→ 〈P, σ, σ′, 0〉

T4 A process executes an assignment guard.
〈P, σ, ∅〉 −→ 〈P ′, σ, σ′, 0〉

2. Event transition
T5 (1) A transition can be fired by the atomic action that has just complet-

ed. 〈P, σ, σ′, 0〉 〈σ,σ
′〉−→ 〈P ′, σ′, ∅〉

(2) A transition can be fired by the action of its environment.

〈P, σ, ∅〉 〈σ,σ
′〉−→ 〈P ′, σ′, ∅〉

3. Time advance transition
T6 A process that cannot do anything else will allow time to advance. Time

advances in unit steps.

〈P, σ, ∅〉 1−→ 〈P ′, σ, ∅〉

The configuration can be implemented in Maude as below.
fmod CONFIG is pr VERILOG-PROGRAM .

pr ENVIRONMENT .
......
op # : -> Init [ctor] .
op 1 : -> Flag [ctor] .
op 0 : -> EndPoint [ctor] .
op <> : -> Index [ctor] .
op <1> : -> Index [ctor] .
op <2> : -> Index [ctor] .
op ^ : Index Index-> Index [ctor assoc id: <>] .

op < , , > : Program Env Init -> Config [ctor] .
op < , , , , > : Program Env Env Flag Index -> Config [ctor] .
op < , , , > : Program Env Env EndPoint -> Config [ctor] .

endfm

The definition of configurations in Maude is based on the three types of
configurations. The first type contains three components and ends with a #

which is the only element of sort Init (i.e., representing ∅). And the second
type contains five components among which the fourth is the Flag represented
by 1 and the fifth is a Index. The third type contains four components and the
fourth is the EndPoint represented by 0.

5.2 Deriving Operational Semantics from Algebraic Semantics

The main purpose of this section is to derive the transition system for Verilog
from its algebraic laws. This approach allows the operational semantics to be
derived as theorems, rather than being presented as postulates or definitions.

Firstly we give the derivation strategy, which is based on the head normal of
each program. For every program, its location status can be null, 〈〉 or seq.

Definition 5.1 (Derivation Strategy)

(1.a) If HF (P, null) = ([]i∈I{bi&(xi := ei) (Pi, tagi)}, null),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.a1] : . < P , env , # > => < Pi , env , env <- (x , e) , 1 , tag >

if (hgct1,null) := HF(P,null) /\ (hgc [] {b &(x := e)(Pi,tag)} [] hgc’, null)
:= (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.a1’] : . < P , env , # > => < Pi , env , env , 1 , tag >
if (hgct1,null) := HF(P,null) /\ (hgc [] {b &(Skip)(Pi,tag)} [] hgc’, null)
:= (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.a2] : . < P , env , # > => < Pi , env , env <- (x , e) , 0 >
if (hgct1,null) := HF(P,null) /\ (hgc [] {b &(x := e)(Pi,tag)} [] hgc’, null)
:= (hgct1,null) /\ b[env] /\ tag == 0 .

crl [1.a3] : . < P , env , env’ , 0 > => < P , env’ , # >
if (hgct1,null) := HF(P,null) .

(1.b) If HF (P, null) = ([]i∈I{@(ηi) (Pi, null)}, null),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.b1] : . < P , env , env’ , 0 > => < P , env’ , # >

if (hgct2,null) := HF(P,null) /\ not fire(guard(hgct2))(env,env’) .

crl [1.b2] : . < P , env , env’ , 0 > => < Pi , env’ , # >
if (hgct2,null) := HF(P,null) /\ (hgc [] {@(g)(Pi,null)} [] hgc’ , null) :=
(hgct2,null) /\ fire(g)(env,env’) .

crl [1.b3] : . < P , env , # > => < P , env , # >
if (hgct2,null) := HF(P,null) .

(1.c) If HF (P, null) = ([]{#1 (R,null)}, null),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.

crl [1.c1] : < P , env , env’ , 0 > => < P , env’ , # >
({# 1(R,null)} , null) := HF(P,null) .

crl [1.c2] : < P , env , # > => < R , env , # >
({# 1(R,null)} , null) := HF(P,null) .

(1.d) If HF (P, null) = ([]i∈I{bi&(xi := ei) (Pi, tagi)} [] []j∈J{@(ηj) (Rj , null)},
null),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.d1] : . < P , env , # > => < Pi , env , env <- (x , e) , 1 , tag >

if (hgct1 [] hgct2,null) := HF(P,null) /\ (hgc [] {b &(x := e)(Pi,tag)} [] hgc’,
null):= (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.d1’] : . < P , env , # > => < Pi , env , env , 1 , tag >
if (hgct1 [] hgct2,null) := HF(P,null) /\ (hgc [] {b &(Skip)(Pi,tag)} [] hgc’,
null) := (hgct1,null) /\ b[env] /\ tag =/= 0 .

crl [1.d2] : . < P , env , # > => < Pi , env , env <- (x , e) , 0 >
if (hgct1 [] hgct2,null) := HF(P,null) /\ (hgc [] {b &(x := e)(Pi,tag)} [] hgc’,
null) := (hgct1,null) /\ b[env] /\ tag == 0 .

crl [1.d3] : . < P , env , env’ , 0 > => < P , env’ , # >
if (hgct1 [] hgct2,null) := HF(P,null) /\ not fire(guard(hgct2))(env,env’) .

crl [1.d4] : . < P , env , env’ , 0 > => < R , env’ , # >
if (hgct1 [] hgct2,null) := HF(P,null) /\ (hgc [] {@(g)(R,null)} [] hgc’ , null)
:= (hgct2,null) /\ fire(g)(env,env’) .

(1.e) If HF (P, null) = ([]i∈I{@(ηi) (Pi, null)} [] {#1 (R, null)}, null),

then P can perform transitions at states 〈P, σ, ∅〉 and 〈P, σ, σ′, 0〉.
crl [1.e1] : . < P , env , env’ , 0 > => < P , env’ , # >

if (hgct2 [] {# 1(R,null)},null) := HF(P,null) /\ not fire(guard(hgct2))(env,env’) .

crl [1.e2] : . < P , env , env’ , 0 > => < R , env’ , # >
if (hgct2 [] {# 1(R,null)},null) := HF(P,null) /\ (hgc [] {@(g)(R,null)} [] hgc’
, null) := (hgct2,null) /\ fire(g)(env,env’) .

crl [1.e3] : . < P , env , # > => < R , env’ , # >
if (hgct2 [] {# 1(R,null)},null) := HF(P,null) .

(2.a) If HF (P, seq) = ([]i∈I{b&(xi := ei) (Pi, seq)}, seq),

then P can perform transitions at state 〈P, σ, σ′, 1, seq〉.
crl [2.a] : . < P , env , env’ , 1 , index > => < Pi , env , env <- (x , e) , 1 , index >

if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(x := e)(Pi,index)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

crl [2.a’] : . < P , env , env’ , 1 , index > => < Pi , env , env’ , 1 , index >
if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(Skip)(Pi,index)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

(2.b) If HF (P, seq) = ([]i∈I{bi&(xi := ei) (Pi, 0)}, seq),

then P can perform transitions at state 〈P, σ, σ′, 1, seq〉.
crl [2.b] : . < P , env , env’ , 1 , index > => < Pi , env , env <- (x , e) , 0 >

if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(x := e)(Pi,0)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

crl [2.b’] : . < P , env , env’ , 1 , index > => < Pi , env , env’ , 0>
if (hgct1,index) := HF(P,index) /\ (hgc [] {b &(Skip)(Pi,0)} [] hgc’,
index) := (hgct1,index) /\ b[env] .

crl [2.b”] : . < P , env , env’ , 1 , index > => < P , env , env’ , 0 >
if (hgct1 [] hgct2,index) := HF(P,index) .

crl [2.b”’] : . < P , env , env’ , 1 , index > => < P , env , env’ , 0 >
if (hgct2 [] {# 1(R,null)},index) := HF(P,index) .

(3.a) If HF (P, 〈〉) = ([]i∈I{gi (Pi, tagi)}, 〈〉) and ∀i ∈ I • tagi 6= 〈〉,

then P can perform transitions at state 〈P, σ, σ′, 1, 〈〉〉.
crl [3.a] : . < P , env , env’ , 1 , <> > => < P , env , env’ , 0 >

if (hgc , <>) := HF(P , <>) /\ tagnotempty(hgc) .

For the above derivation strategy, items ((1.a)–(1.e)) explore the situation
that a program is at the location status null. The corresponding derivation strat-
egy can be defined based on the five types of guarded choice of the head normal
form of a program. If the head normal form of a program is expressed as the first
type of guarded choice, the program can perform the first instantaneous action
of an atomic action provided that the location status of the subsequent process
is not 0. On the other hand, if the location status of the subsequent process
is 0, this means that the program can perform an assignment guard transition.
Meanwhile, the program can also perform a transition of event transition type.
This can be expressed in item (1.a). When implementing in Maude, hgct1 and
hgct2 stand for the first and second type of guarded choice.

Now we use rule [1.a1] as an example to make further explanation. From the
conditions, we know that the head normal form of P at the location status null
is hgct1 and hgct1 has a component b&(x := e)(Pi,tag). In this case, process
P can perform a transition reflecting the execution of that component (i.e., the
assignment guarded component). The notation “env<-(x,e)” stands for a new
state which is the same as env except assigning value e to x.

There are two types of event transitions. When designing the operational
semantics, we take the understanding that, if a process has an event transition
of the first type, it can also have an event transition of the second type, and
vice-versa. When mechanizing the derivation of operational semantics, we take
the understanding of regarding a system as closed. Therefore, the second type
of event transition is not listed here.

Item (1.b) models the case that the head normal form of a program is ex-
pressed as the second type of guarded choice (i.e., event guarded choice). For this
case, the program can perform an event transition, including the event transition
that one of the guards is fired (i.e., [1.b2]), or the event transition that none of the
guards are satisfied (i.e., [1.b1]). The program can also have time delay transition
(i.e., [1.b3]), expressed as “<P,env,#> => <P,env,#>” in Maude. The notation
“fire(g)(env,env’)” in [1.b2] means that the change from state env to evnv’

can fire the event guard g. The notation “not fire(guard(hgct2))(env,env’)”
in [1.b1] means that the state change from state env to evnv’ cannot fire any
guards in hgct2 (i.e., the event guarded choice part of P).

For item (1.c), it models the case that a program is expressed as the time de-
lay guarded choice. For this case, the program can perform time delay transition.
It can also have event transition.

For item (1.d), it models the case that the head normal form of a program
is expressed as the fourth type of guarded choice, i.e., the compound of the
first and second type of guarded choice. For this case, the program can perform
instantaneous transition (i.e., [1.d1], [1.d1’] and [1.d2]). It can also have event
transition (i.e., [1.d3] and [1.d4]). As the behavior of assignment is instantaneous,
the program cannot perform time delay transition. Transition [1.d1] (and [1.d1’])

models the case that the process executes an assignment, whereas transition
[1.d2] models the case that the process executes as assignment guard. [1.d3]
models the event transition that all the event guards cannot be fired, whereas
[1.d4] models the event transition that one guard is fired among all event guards.

Item (1.e) models the case that the head normal form of a program is ex-
pressed as the compound of the second and third type of guarded choice. At this
case, the program can perform event transition based on firing condition of all
guards. The program can also have time delay transition.

Items (2.a) and (2.b) model the situation that a process has already per-
formed a sequence of instantaneous actions for an atomic action. Item (2.a)
models the case that the process continues to execute the next instantaneous
action for the atomic action. Therefore, it can perform the second type of in-
stantaneous action, leaving the location status before and after the transition
unchanged.

Now we consider a single threaded process (denoted by location status 〈〉),
which performs a sequence of instantaneous actions and reaches at the point
that the remaining process is guard, time delay or parallel process. In this case,
for the head normal form of the remaining process, the subsequent process after
each head cannot be 〈〉. For this case, the original process will perform the third
type of instantaneous transitions, i.e., completing an atomic action. This case is
illustrated in item (3.a).

Example 5.2 We take program P in Example 4.1 to illustrate the effective-
ness of our derivation strategy. Assume that the initial values of x, y are both
0. The head normal form of program P was discussed in Example 4.1. We use
the command “search” to get its transitions in Maude as following. But the
display of the result of “search” is in a breadth-first style which is not very
straightforward to see. We then use the “show path (state number)” command
to show one of the path below. In order to display the result neatly, we also omit
the rules used by the corresponding transition.

< ((x := x+ 1 ; @(↑ y)) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty ,# >
< (x := x+ 1 ; @(↑ y)) ‖ (#1 ; y := y + 1) , empty , (y, 1) , 0 >
< (x := x+ 1 ; @(↑ y)) ‖ (#1 ; y := y + 1) , (y, 1) , # >
< @(↑ y) ‖ (#1 ; y := y + 1) , (y, 1) , (y, 1)|(x, 1) , 〈1〉 >
< @(↑ y) ‖ (#1 ; y := y + 1) , (y, 1) , (y, 1)|(x, 1) , 0 >
< @(↑ y) ‖ (#1 ; y := y + 1) , (x, 1)|(y, 1) , # >
< @(↑ y) ‖ y := y + 1 , (x, 1)|(y, 1) , # >
< @(↑ y) , (x, 1)|(y, 1) , (x, 1)|(y, 2) , 0 >
< nil , (x, 1)|(y, 2) , # >

The above is one execution sequence leading program P to the terminating
state and the final state of variables is “x = 1 ∧ y = 2”. For program P , there
are two execution sequences leading program P to the terminating state. For
another execution sequence, the final variable state is also “x = 1 ∧ y = 2”. �

5.3 Mechanizing Operational Semantics
In the last subsection we provided the strategy for deriving the operational
semantics from algebraic semantics. Our approach is via the concept of head
normal form. Based on the derivation strategy, we can derive the full set of op-
erational semantics for Verilog as theorems by strict proof. Now we consider the

practical aspect of the derived operational semantics. We apply Maude in mech-
anizing the derived operational semantics. We select assignment, event guard
and parallel composition here for illustrating the mechanization.

As the execution of x := e is instantaneous, if x := e is the first statement
of an atomic action, it can be scheduled at once or the environment is allowed
to perform some atomic actions. If x := e is not the first action of an atomic
action, it should be scheduled to execute at once without interruption by the
environment. Time cannot advance for assignment. When animating the oper-
ational semantics, we do not know the environment’s behaviour. Therefore, we
take the understanding of regarding a system as closed. Although the second
type of event transition can be derived, we regard it as not executable (see be-
low for x := e and @(g)). We use the keyword “[nonexec]” to show this.

rl : . < x := e , env , # > => < nil , env , env <- (x , e) , 1 , <> > .

rl : . < x := e , env , env’ , 1 , <> > => < nil , env , env <- (x , e) , 1 , <> > .

rl : . < x := e , env , env’ , 0 > => < x := e , env’ , # > .

rl : . < x := e , env , # > => < x := e , env’ , # > [nonexec] .

The guard @(g) can be immediately fired after it is scheduled to execute; it
is actually triggered by the execution of its previous action that has just com-
pleted. Another case is that the guard waits to be fired by its environment. Time
can also advance before the guard becomes enabled.

rl : . < @(g) , env , env’ , 1 , <> > => < @(g) , env , env’ , 0 > .

rl : . < @(g) , env , env’ , 0 > => < nil , env’ , # > if fire(g)(env , env’) .

rl : . < @(g) , env , env’ , 0 > => < @(g) , env’ , # > if not fire(g)(env , env’) .

rl : . < @(g) , env , # > => < nil , env’ , # > if fire(g)(env , env’) [nonexec] .

rl : . < @(g) , env , # > => < @(g) , env’ , # > if not fire(g)(env , env’) [nonexec] .

rl : . < @(g) , env , # > => < @(g) , env , # > .

Now we consider the mechanizing of the derived operational semantics for
parallel composition. If one of the two parallel parts of a Verilog program can
perform the first instantaneous action of an atomic action, then the whole pro-
cess can also make this transition.4

crl : . < P || Q , env , # > => < par(nil,Q) , env , env’ , 0 >
if . < P , env , # > => < nil , env , env’ , 1 , seq > .

crl : . < Q || P , env , # > => < par(Q,nil) , env , env’ , 0 >
if . < P , env , # > => < nil , env , env’ , 1 , seq > .

crl : . < P || Q , env , # > => < par(P’,Q) , env , env’ , 1 , <1> ^ seq >
if . < P , env , # > => < P’ , env , env’ , 1 , seq > /\ P’ =/= nil .

crl : . < Q || P , env , # > => < par(Q,P’) , env , env’ , 1 , <2> ^ seq >
if . < P , env , # > => < P’ , env , env’ , 1 , seq > /\ P’ =/= nil .

If one of the two parallel parts of a Verilog program continues to perform the
instantaneous action of an atomic action, then the whole process can also make
this transition.

crl : . < P || Q , env , env’ , 1 , <1> ^ seq > => < par(P’,Q) , env , env’’,<1> ^ seq >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’’ , 1 , seq > /\ P’ =/= nil .

crl : . < Q || P , env , env’ , 1 , <2> ^ seq > => < par(Q,P’) , env , env’’,<2> ^ seq >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’’ , 1 , seq > /\ P’ =/= nil .

4 For this case, we can also have the situation that P or Q may be the empty process. In
the consideration for other cases below, for P ‖ Q, P or Q maybe also be the empty
process. We omit the transition rules which are similar to the normal situation.

If one of the two parallel parts of a Verilog program exits from an atomic
action, then the whole process can also exit from the atomic action. A parallel
process can also exit from its prior instantaneous section.

crl : . < P || Q , env , env’ , 1 , <1> ^ seq > => < par(P’,Q) , env , env’ , 0 >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’ , 0 > .

crl : . < Q || P , env , env’ , 1 , <2> ^ seq > => < par(Q,P’) , env , env’ , 0 >
if . < P , env , env’ , 1 , seq > => < P’ , env , env’ , 0 > .

crl : . < P || Q , env , env’ , 1 , <> > => < P || Q , env , env’ , 0 > .

If one of the two parallel parts of a Verilog program executes an atomic as-
signment, then the whole process can also execute the atomic assignment.

crl : . < P || Q , env , # > => < par(P’,Q) , env , env’ , 0 >
if . < P , env , # > => < P’ , env , env’ , 0 > .

crl : . < Q || P , env , # > => < par(Q,P’) , env , env’ , 0 >
if . < P , env , # > => < P’ , env , env’ , 0 > .

P ‖ Q can perform a triggered action caused by its predecessor or one of its
components. P ‖ Q allows the environment to perform an atomic action. P ‖ Q
allows time advance iff both components do so.

crl : . < P || Q , env , env’ , 0 > => < par(P’,Q’) , env’ , # >
if . < P , env , env’ , 0 > => < P’ , env’ , # > /\

. < Q , env , env’ , 0 > => < Q’ , env’ , # > .

crl : . < P || Q , env , # > => < par(P’,Q’) , env’ , # >
if . < P , env , # > => < P’ , env’ , # > /\ . < Q , env , # > => < Q’ , env’ , # > .

crl : . < P || Q , env , # > => < par(P’,Q’) , env , # >
if . < P , env , # > => < P’ , env , # > /\ . < Q , env , # > => < Q’ , env , # > .

Example 5.3 Let P be the program described in Example 4.1 and Example
5.2. In Example 5.2, we have already considered the execution sequence of pro-
gram P using the derivation strategy via algebraic semantics. Now we consider
its execution based on the transition rules (i.e., the operational semantics in this
section).

There are also two execution sequences leading program P to the terminating
state. The first sequence is the same as the one described as Example 5.2 and
the final state of program variables is also “x = 1 ∧ y = 2”.

For the second execution sequence, the final state of program variables is also
“x = 1 ∧ y = 2” and its detailed transition is as below. This execution sequence
is the same as the second sequence in Example 5.2 leading program P to the
terminating state (although we didn’t list it).

< ((x := x+ 1 ; @(↑ y)) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty ,# >
< ((@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty , (x, 1) , 〈1〉 >
< ((@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , empty , (x, 1) , 0 >
< (@(↑ y) ‖ y := y + 1) ‖ (#1 ; y := y + 1) , (x, 1) , # >
< @(↑ y) ‖ (#1 ; y := y + 1) , (x, 1) , (x, 1)|(y, 1), 0 >
< #1 ; y := y + 1 , (x, 1)|(y, 1), # >
< y := y + 1 , (x, 1)|(y, 1), # >
< nil , (x, 1)|(y, 2), 1 , 〈〉 >

The mechanical approach indicates that the transition system from the derived
operational semantics is the same as the one from the derivation strategy. �

6 Conclusion and Future Work

This paper has presented how an algebraic semantics links with the operational
semantics for Verilog, starting from the algebraic semantics. Our approach is to
derive the operational semantics from the algebraic semantics. The mechanical
method is applied in linking the two semantics. We used the equational and
rewriting logic system Maude to support the mechanical implementation.

We have given the algebraic laws. Our approach is new, where a process is
expressed as the guarded choice of a set of guarded components with location
status. This guarded choice gives us a way to express how a process can be se-
quentialized, which also reflects the scheduling policy. In order to support the
derivation, we introduced the concept of head normal form for every program at
a location status. We have studied the derivation of the operational semantics for
Verilog from its algebraic semantics. We have given the definition of the deriva-
tion strategy. Then a transition system (i.e., operational semantics) for Verilog
can be derived via the derivation strategy. The algebraic laws, head normal for-
m, derivation strategy and derived transition system are all implemented in the
Maude system. The results mechanized indicate that the transition system of
the derived operational semantics is the same as the one based on the derivation
strategy.

Semantic linking is the challenging research [7]. For the future, we are con-
tinuing to explore further linking theories for Verilog semantics [8]. In particular
the mechanical approach to the derivation of denotational semantics from alge-
braic semantics is also very challenging.

Acknowledgement This work is supported by National Basic Research Program

of China (No. 2011CB302904), National High Technology Research and Development

Program of China (No. 2011AA010101 and No. 2012AA011205), National Natural Sci-

ence Foundation of China (No. 61061130541 and No. 61021004), and Shanghai Leading

Academic Discipline Project (No. B412).

References

1. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 System. In Proc. RTA 2003: 14th International Conference on
Rewriting Techniques and Applications, Valencia, Spain, June 9-11, 2003, volume
2706 of Lecture Notes in Computer Science, pages 76–87. Springer-Verlag, June
2003.

2. M. Clavel, F. F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. Maude Manual (Version 2.6). January 2011.

3. M. J. C. Gordon. The semantic challenge of Verilog HDL. In Proc. Tenth Annual
IEEE Symposium on Logic in Computer Science, pages 136–145. IEEE Computer
Society Press, June 1995.

4. M. J. C. Gordon. Relating event and trace semantics of hardware description
languages. The Computer Journal, 45(1):27–36, 2002.

5. J. He and Q. Xu. An operational semantics of a simulator algorithm. Technical
Report 204, UNU/IIST, P.O. Box 3058, Macau SAR, China, 2000.

6. J. He and H. Zhu. Formalising Verilog. In Proc. ICECS 2000: IEEE International
Conference on Electronics, Circuits and Systems, pages 412–415. IEEE Computer
Society Press, December 2000.

7. C. A. R. Hoare. Algebra of concurrent programming. In Meeting 52 of WG 2.3,
2011.

8. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice Hall
International Series in Computer Science, 1998.

9. IEEE. IEEE Standard Hardware Description Language based on the Verilog Hard-
ware Description Language, volume IEEE Standard 1364-1995. IEEE, 1995.

10. IEEE. IEEE Standard Hardware Description Language based on the Verilog Hard-
ware Description Language, volume IEEE Standard 1364-2001. IEEE, 2001.

11. Y. Li and J. He. Formalising Verilog: Operational semantics and bisimulation.
Technical Report 217, UNU/IIST, P.O. Box 3058, Macau SAR, China, November
2000.

12. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work. Electronic Notes in Theoretical Computer Science, 4:190–225, 1996.

13. N. Mart́ı-Oliet and J. Meseguer. Rewriting logic: Roadmap and bibliography.
Theoretical Computer Science, 285(2):121–154, 2002.

14. J. Meseguer. Twenty years of rewriting logic. Journal of Logic and Algebraic
Programming. To appear.

15. R. Milner. Communication and Concurrency. Prentice Hall International Series in
Computer Science, 1990.

16. R. Milner. Communication and Mobile System: π-calculus. Cambridge University
Press, 1999.

17. N. Nissanke. Realtime Systems. Prentice Hall International Series in Computer
Science, 1997.

18. A. Verdejo and N. Mart́ı-Oliet. Implementing ccs in maude 2. Electronic Notes in
Theoretical Computer Science, 71:282–300, 2002.

19. C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269–276, 1991.

20. H. Zhu, J. P. Bowen, and J. He. Deriving operational semantics from denotational
semantics for Verilog. In Proc. APSEC 2001: 8th Asia-Pacific Software Engineering
Conference, pages 177–184. IEEE Computer Society Press, December 2001.

21. H. Zhu, J. P. Bowen, and J. He. From operational semantics to denotational
semantics for Verilog. In Proc. CHARME 2001: 11th Advanced Research Working
Conference on Correct Hardware Design and Verification Methods, volume 2144
of Lecture Notes in Computer Science, pages 449–464. Springer-Verlag, September
2001.

22. H. Zhu and J. He. A semantics of Verilog using Duration Calculus. In Proc.
International Conference on Software: Theory and Practice, pages 421–432, August
2000.

23. H. Zhu, J. He, and J. P. Bowen. From algebraic semantics to denotational semantics
for verilog. Innovations in Systems and Software Engineering: A NASA Journal,
4(4):341–360, 2008.

