
Denotational Semantics for a Probabilistic Timed
Shared-Variable Language

Huibiao Zhu1, Jeff W. Sanders2, Jifeng He1, and Shengchao Qin3

1 Shanghai Key Laboratory of Trustworthy Computing
Software Engineering Institute, East China Normal University

3663 Zhongshan Road (North), Shanghai, China, 200062
{hbzhu,jifeng}@sei.ecnu.edu.cn
2 African Institute for Mathematical Sciences

6-8 Melrose Road, Muizenberg 7945, South Africa
jsanders@aims.ac.za

3 School of Computing, University of Teesside
Middlesbrough TS1 3BA, UK

s.qin@tees.ac.uk

Abstract. Complex software systems typically involve features like time, con-
currency and probability, where probabilistic computations play an increasing
role. It is challenging to formalize languages comprising all these features. We
have proposed a language, which integrates probability with time and shared-
variable concurrency (called PTSC [19]). We also explored its operational se-
mantics, where a set of algebraic laws has been investigated via bisimulation.

In this paper we explore the denotational semantics for our probabilistic lan-
guage. In order to deal with the above three features and the nondeterminism, we
introduce a tree structure, called P -tree, to model concurrent probabilistic pro-
grams. The denotational semantics of each statement is formalized in the structure
of P -tree. Based on the achieved semantics, a set of algebraic laws is explored;
i.e., especially those parallel expansion laws. These laws can be proved via our
achieved denotational semantics.

1 Introduction

As probabilistic computations play an increasing role in solving various problems [16],
various proposals on probabilistic languages have been reported [1–3, 5, 8–10, 13–
15]. Complex software systems typically involve important features like real-time [12],
probability and shared-variable concurrency. The shared-variable mechanism is typi-
cally used for communications among components running in parallel, such as the Java
programming language and the Verilog hardware description language. It proves to be
challenging to formalize it [6, 17, 18]. Therefore, system designers would expect a for-
mal model that incorporates all these features to be available for them to use.

In [19], we have integrated a formal language model, which equips with probability,
time and shared-variable concurrency. Our model is meant to facilitate the specification
of complex software systems. The probability feature is reflected by the probabilistic
nondeterministic choice, probabilistic guarded choice and the probabilistic scheduling

B. Wolff, M.-C. Gaudel, A. Feliachi (Eds.): UTP 2012, LNCS 7681, pp. 224–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 225

of actions from different concurrent components in a program. For this proposed lan-
guage model, an operational semantics was formalized. On the top of the operational
model, an abstract bisimulation relation was defined and several algebraic laws have
been derived for program equivalence.

The PTSC model proposed in this paper has recently been used to specify a circuit
in the register-transfer level [11]. The circuit takes two integers as the input and sums
up them as the output, where the register containing one of the inputs may be faulty.
Our algebraic laws proposed for the PTSC language have also been employed to ver-
ify that an implementation of the circuit with probabilistic behavior conforms to the
probabilistic specification.

As advocated in Hoare and He’s Unifying Theories of Programming (UTP) [7], three
different styles of mathematical representations are normally used: operational, deno-
tational, and algebraic ones. Denotational semantics provides mathematical meanings
to programs. Compared with operational semantics, it is more abstract. As PTSC in-
tegrates probability, time and shared-variable in one single model, it is challenging to
formalize its denotational semantics. This paper studies the denotational semantics for
PTSC. In order to deal with the above three features, together with the feature of nonde-
terminism, we introduce the concept of P -Tree in our model. The P -tree structure can
be considered as the extension of traditional trace structure. Based on the achieved de-
notational semantics and the exploration of the equivalence of P -trees, a set of algebraic
laws is investigated.

For exploring the unifying of the semantics for PTSC, we have explored the link
between operational semantics and algebraic semantics [20]. Our approach in [20] is
to derive operational semantics from algebraic semantics for our proposed probabilis-
tic language. Moreover, we have also explored the animation of the link between the
two semantics. Our approach can be considered as the soundness and completeness
exploration of operational semantics from algebraic viewpoint, both theoretically and
practically.

The remainder of this paper is organized as follows. Section 2 introduces our prob-
abilistic language with time and shared-variable concurrency (i.e., PTSC). Section 3
explores the denotational semantic model. In order to deal with the above three fea-
tures, together with the feature of nondeterminism, we introduce a tree structure in our
semantic model, called P -tree. Section 4 investigates the denotational semantics for
each statement of PTSC. Our P -tree structure is successfully applied in the exploration.
For the aim of explore program equivalence, we provide an equivalence relation for P -
trees. Based on the achieved semantics and the equivalence of P -tree structure, a set of
algebraic laws is explored in section 5. Section 6 concludes the paper.

2 The Language PTSC

The PTSC language integrates probability and time with shared-variable concurrency. It
has been designed to express the scheduling of threads, incorporating with concurrency
and nondeterminism as well as probability and time. It is thus well suited to discrete
event simulation where those features are present. The PTSC language has the following
syntactical elements:

226 H. Zhu et al.

P ::= Skip | x := e | Chaos | if b then P else P |while b do P

| @b P | #n P | P ; P

| P � P | P �p P | P ‖ P | P ‖p P

Note that:
(1) x := e is the atomic assignment. Skip behaves the same as x := x. Chaos stands

for the divergent process.
(2) Regarding @b P , when the Boolean condition b is satisfied, process P can have the

chance to be scheduled. The program @b P can wait the environment to fire the
event if the Boolean condition b is not met currently. For #n P , after n time units
elapse, process P can be scheduled.

(3) Similar to a conventional programming language, if b then P else Q stands for
the conditional, whereas while b do P stands for the iteration.

(4) The mechanism for parallel composition is a shared-variable interleaving model
with probability feature. For probabilistic parallel composition P ‖p Q, if process
P can perform an atomic action, P ‖p Q has conditional probability p to do that
atomic action. On the other hand, if process Q can perform an atomic action, P ‖p
Q has conditional probability 1−p to perform that action. On the other hand, P ‖ Q
stands for the general parallel composition.

(5) � stands for the nondeterministic choice, whereas �p stands for the probabilistic
nondeterministic choice. P �pQ indicates that the probability for P �pQ to behave
as P is p, where the probability for P �p Q to behave as Q is 1−p.

In order to facilitate algebraic reasoning, we enrich our language with a guarded choice.
As our parallel composition has probability feature, the guarded choice also shares this
feature. Guarded choice is classified into five types:

(1) []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
(2) []i∈I{@bi Pi}
(3) []{#1 R}
(4) []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}

[][]k∈K{@bk Qk}
(5) []i∈I{@bi Pi}[]{#1 R}
Regarding []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} in the guarded choice type (1)
and (4), it should satisfy the following healthiness conditions:

(a) ∀i • (∨j∈Ji
bij = true) and

(∀j1, j2 • (j1 �= j2) ⇒ ((bij1 ∧ bij2) = false))

(b) Σi∈I pi = 1

The first type is composed of a set of assignment-guarded components. The condition (a)
indicates that for any i ∈ I , the Boolean conditions bij from “choicej∈Ji(bij&(xij :=
eij)Pij)” are complete and disjoint. Therefore, there will be exactly one component
bij&(xij := eij)Pij selected among all j ∈ Ji. Furthermore, for any i ∈ I , the possi-
bility for a component (xij := eij)Pij (where bij is met) to be scheduled is pi and it
should satisfy the second healthiness condition.

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 227

The second type is composed of a set of event-guarded components. If one guard
is satisfied, the subsequent behaviour for the whole process will be followed by its
subsequent behaviour of the satisfied component. The firing of these guards is disjoint.

The third type is composed of one time delay component. Initially, it cannot do
anything except letting time advance one unit.

The fourth type is the guarded choice composition of the first and second type of
guarded choice. If there exists one bk (k ∈ K) being satisfied currently, then the event
@ bk is fired and the subsequent behaviour isQk. If there is no satisfied bk, the behaviour
of the fourth type of guarded choice is the same as that of the first type.

The fifth type is the compound of the second and third type of guarded choice. Cur-
rently, if there exists i (i ∈ I) such that bi is satisfied, then the subsequent behaviour of
the whole guarded choice is Pi. On the other hand, if there is no i (i ∈ I) such that bi
is satisfied currently, then the whole guarded choice cannot do anything initially except
letting time advance one unit. The subsequent behaviour is the same as the behaviour
of R.

As the first type of guarded choice does not have time advancing behavior, there is
no type of guarded choice composing of the first and third type of guarded choice.

3 The Denotational Semantic Model for PTSC

In order to deal with shared-variable, probability and time in our model, we introduce
the concept of snapshots for our denotational model.

A snapshot is expressed as a triple (tag, p, σ), where:

(1) σ stands for the contributed state. These states are contributed by the program itself
or the environment.

(2) tag can be 0, 0−, 1 and
√

. If tag = 0, it indicates that the contribution of σ is
due to the environment. If tag = 1, it indicates the contribution of σ is due to the
process itself. On the other hand, if tag =

√
, it indicates that time advances one

unit and the state σ is the same as the previous one. Flag 0− is used to model the
case that after the environment actions, the subsequent process will be assignment.

(3) For the second element, it is used to express the probability of the contributed state.
If tag =

√
, it will be ∅, indicating that we do not need to consider the probability

for time delay. On the other hand, if tag = 0, 0−, 1, the second element p will be
the probability of the contributing the state σ.

Based on the concept, we are now ready in defining the concept of P−-trees. The intro-
duction of P−-tree can be used in formalizing the denotational semantics for PTSC.

Definition 3.1 (P−-tree)

(1) st is P−-tree, where st stands for the execution state. Here, st can be div, wait or
ter.

(2) {|(tag, pi, σi) : Ui | i ∈ I ∧Σi∈I pi = 1|} is P−-tree if each element in every Ui is
P−-tree.

(3) {|(√, ∅, σ) : U}|} is P−-tree if each element in U is P−-tree.

Note that st ∈ Ui(or U) iff Ui = {st} (or U = {st}). �

228 H. Zhu et al.

Here, the notation “{| |}”stands for a bag. For a P−-tree, st can be used to model the
corresponding leaf. It stands for the execution state of the corresponding execution path.
During the execution, a program can be in divergent state (i.e., div), waiting state (i.e.,
wait) or terminating state (i.e., ter).

For {|(tag, pi, σi) : Ui | i ∈ I ∧Σi∈I pi = 1|}, the property “Σi∈I pi = 1” indicates
that the summation of all the probabilities for all the corresponding newly updated states
is 1. Here, tag can be 0, 1. If tag = 1, it indicates that all the newly updated states
with the corresponding probabilities are contributed by the program itself. On the other
hand, if tag = 0, it indicates that all the newly updated states with the corresponding
probabilities are contributed by the environment. Moreover, tag = 0− is used to model
the case that after the environment’s behavior, the subsequent behavior for the process
is the assignment action.

For {|(√, ∅, σ) : U |}, the snapshot (
√
, ∅, σ) here is used to model one unit delay

behavior. The notation ∅ in snapshot (
√
, ∅, σ) indicates that time delay does not concern

probability, whereas
√

stands for one unit time advancing and σ stands for the state after
the time delay.

Further, for (tag, μ, σ) : U in a P−-tree, if st ∈ U , it indicates that it cannot contain
more than one leaf point. For example, {ter, wait} is not allowed. Next we use some
examples to illustrate our P−-tree.

Example 3.2. Let Q1 =df x := 1 ; #1 ; x := x + 1 �0.4 x := x+ 2. We find that
below is one P−-tree of program Q1.

{|(1, 1, σ1) : {T0}|}
where, T0 = {|(√, ∅, σ1) : {T1}|} and

T1 = {|(1, 0.4, σ1) : {T1,1}, (1, 0.6, σ1) : {T1,2}|} and

T1,1 = {|(1, 1, σ2) : {ter}|}, T1,2 = {|(1, 1, σ3) : {ter}|}
Here, σ1 = {x �→ 1}, σ2 = {x �→ 2} and σ3 = {x �→ 3}.

For snapshot (1, 1, σ1), it is used to model the contribution ofx := 1. Snapshot (
√
, ∅, σ1)

is used to model #1. Tree T1 models the behavior of x := x+ 1 �0.4 x := x := x+ 2,
whereas treeT1,1 andT1,2 model the behaviour ofx := x+1 andx := x+2 respectively.

Furthermore, letQ2 =df x := 1 ; #1 ; x := x+1�x := x+2, below is theP−-tree
of program Q2.

{|(1, 1, σ1) : {T2}|}
where, T2 = {|(√, ∅, σ1) : {T3,r|0 ≤ r ≤ 1}|} and

T3,r = {|(1, r, σ1) : {T1,1}, (1, 1− r, σ1) : {T1,2}|}
Here, T1,1 and T1,2 have been defined in the above for modelling x := x + 1 and
x := x+2 respectively.T3,r is used to model the probabilistic choice x := x+1�rx :=
x + 2. Hence, {T3,r|0 ≤ r ≤ 1} can model the behaviour of nondeterministic choice
x := x+ 1 � x := x+ 2. �

Next we use an example to illustrate how a process’s behaviour and its environment’s
behaviour cooperate.

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 229

Example 3.3. Let Q1 = x := 1�0.4 x := 2, Q2 = y := 1�0.3 y := 2, Q = Q1 ‖ Q2.
Consider the P−-trees for process Q1, Q2 and Q respectively.

We consider the case that, for process Q, the assignment in Q1 is scheduled first. In
this case, below is one P−-tree for Q1 at the initial state (tag, μ, σ0).

(tag, μ, σ0) : { {| (1, 0.4, σ0) : { {|(1, 1, σ1) : {ter}|} },
(1, 0.6, σ0) : { {|(1, 1, σ2) : {ter}|} }
|} }

where, σ0 = {x �→ 0, y �→ 0}, σ1 = {x �→ 1, y �→ 0}, σ2 = {x �→ 2, y �→ 0}.

As Q1 is scheduled first, similarly, below is the corresponding P−-tree for Q2 at the
initial state (tag, μ, σ0).

(tag, μ, σ0) : { {| (0−, 0.4, σ0) : { {|(0−, 1, σ1) : {T2}|} },
(0−, 0.6, σ0) : { {|(0−, 1, σ1) : {T ′

2}|} }
|} }

where, T2 = {| (1, 0.3, σ1) : {{|(1, 1, σ′
1) : {ter}|}},

(1, 0.7, σ1) : {{|(1, 1, σ′′
1) : {ter}|}} |}

T ′
2 = {| (1, 0.3, σ2) : {{|(1, 1, σ′

2) : {ter}|}},
(1, 0.7, σ2) : {{|(1, 1, σ′′

2) : {ter}|}} |}
where, σ′

1 = {x �→ 1, y �→ 1}, σ′′
1 = {x �→ 1, y �→ 2}

σ′
2 = {x �→ 2, y �→ 1}, σ′′

2 = {x �→ 2, y �→ 2}
Hence, below is the corresponding P−-tree for process Q (i.e., parallel process Q1 ‖
Q2), which is the merge of the P−-tree of process Q1 and the corresponding P−-tree
of Q2.

(tag, μ, σ0) : { {| (1, 0.4, σ0) : { {|(1, 1, σ1) : {T2}|} },
(1, 0.6, σ0) : { {|(1, 1, σ2) : {T ′

2}|} }
|} }

Similarly, we can also analyze the P−-tree of process Q for the case that the assignment
in Q2 is scheduled first. �

Definition 3.3 (P -tree)

(tag, μ, σ) : U is P -tree if each element in U is P−-tree. �
P -tree is composed of an initial snapshot and a set of P−-trees. The P -tree (tag, μ, σ) :
U indicates that each P−-tree in U is initially at the state shown in snapshot (tag, μ, σ).
Next we define the sequential composition for P−-trees and P -trees.

Definition 3.4 (Sequential Composition of P−-trees)

(1) ((tag0, μ0, σ0) : {st}) ; {(tag, μ, σ) : V | (tag, μ, σ) ∈ Σ}

=df

{
(tag0, μ0, σ0) : V, if st = ter

(tag0, μ0, σ0) : {st}, if st = wait ∨ st = div

230 H. Zhu et al.

If U �= {st}, then

((tag0, μ0, σ0) : U) ; { (tag, μ, σ) : V | (tag, μ, σ) ∈ Σ }
=df (tag0, μ0, σ0) : {T ; { (tag, μ, σ) : V | (tag, μ, σ) ∈ Σ } | T ∈ U }

(2) {|(tagi, μi, σi) : Ui | i ∈ I|} ; {(tag, μ, σ) : V | (tag, μ, σ) ∈ Σ}
=df {| (tagi, μi, σi) : (Ui ; {(tag, μ, σ) : V | (tag, μ, σ) ∈ Σ}) | i ∈ I |}

(3) {(tag, μ, σ) : U | (tag, μ, σ) ∈ Σ} ; {(tag1, μ1, σ1) : V | (tag1, μ1, σ1) ∈ Σ}
=df { ((tag, μ, σ) : U) ; {(tag1, μ1, σ1) : V | (tag1, μ1, σ1) ∈ Σ})

| (tag, μ, σ) ∈ Σ }
�

Here, the notationΣ stands for the set containing all the snapshots. The above definition
deals with the sequential composition of P -trees or P−-trees. The first one considers
the sequential composition of P -tree and a set of P -trees (at any different initial state).
Its definition can be divided into two cases according to the case that the first P -tree is a
leaf point or not. The leaf point can be the terminating state, waiting state or divergence
state.

The second one considers the sequential composition of a P−-tree and a set of P -
trees (at any different initial state). The third one considers the sequential composition
of a set of P -trees with another set of P -trees. Both of the two sets of P -trees can be at
any different initial state.

Example 3.5. Let P =df x := 0�x := 1 and Q =df y := 0�0.5 y := 1. Now we
want to calculate Prob(P ;Q, x = y) and Prob(Q;P, x = y). Assume the initial states
of x and y are −1 respectively. Here the notation Prob(W, c) stands for the probability
that the final state of program W satisfies condition c.

First, we consider the P -tree for program P ;Q, shown below.

(tag, μ, σ) : { {| (1, r, σ) : {{|(1, 1, σ0) : {T1}|}},
(1, 1− r, σ) : {{|(1, 1, σ1) : {T2}|}}
|} | 0 ≤ r ≤ 1 }

where, T1 = {| (1, 0.5, σ0) : {{|(1, 1, σ′
0) : {ter}|}},

(1, 0.5, σ0) : {{|(1, 1, σ′′
0) : {ter}|}} |}

T2 = {| (1, 0.5, σ1) : {{|(1, 1, σ′
1) : {ter}|}},

(1, 0.5, σ1) : {{|(1, 1, σ′′
1) : {ter}|}} |}

σ = {x �→ −1, y �→ −1},
σ0 = {x �→ 0, y �→ −1}, σ′

0 = {x �→ 0, y �→ 0}, σ′′
0 = {x �→ 0, y �→ 1},

σ1 = {x �→ 1, y �→ −1}, σ′
1 = {x �→ 1, y �→ 0}, σ′′

1 = {x �→ 1, y �→ 1},

Based on the P -tree for program P ;Q, we can have:

Prob(P ; Q, x = y)

= min{r × 1× 0.5× 1 + (1− r) × 1× 0.5× 1 | 0 ≤ r ≤ 1}
= min{0.5 | 0 ≤ r ≤ 1} = 0.5

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 231

Next we consider the P -tree for program Q;P , shown below.

(tag, μ, σ) : { {| (1, 0.5, σ) : { {| (1, 1, σ2) : {T3,r | 0 ≤ r ≤ 1} |} },
(1, 0.5, σ) : { {| (1, 1, σ3) : {T4,r | 0 ≤ r ≤ 1} |} }
|} }

where, T3,r = {| (1, r, σ2) : {{|(1, 1, σ′
2) : {ter}|}},

(1, 1− r, σ2) : {{|(1, 1, σ′′
2) : {ter}|}} |}

T4,r = {| (1, r, σ3) : {{|(1, 1, σ′
3) : {ter}|}},

(1, 1− r, σ3) : {{|(1, 1, σ′′
3) : {ter}|}} |}

σ2 = {x �→ −1, y �→ 0}, σ′
2 = {x �→ 0, y �→ 0}, σ′′

2 = {x �→ 1, y �→ 0},
σ3 = {x �→ −1, y �→ 1}, σ′

3 = {x �→ 0, y �→ 1}, σ′′
3 = {x �→ 1, y �→ 1},

Based on the P -tree for program Q;P , we can have:

Prob(Q ; P, x = y)

= 0.5× 1×min{r × 1 | 0 ≤ r ≤ 1} + 0.5× 1×min{r × 1 | 0 ≤ r ≤ 1}
= 0 �

In order to support to later formalization of each statement, we introduce the concept of
idle0(tag, b) P−-tree (tag can be 0 or 0−, and b is a Boolean condition).

Definition 3.6 (idle0(tag, b) P−-tree)

(1) st is idle0(tag, b), where st = wait or ter.

(2) {|(tag, pi, σi) : Si | i ∈ I|} is idle0(tag, b), if for any i ∈ I , b(σi) and ∀X ∈ Si •
X is idle0(tag, b).

where, tag = 0 or 0−. �

For the snapshots in an idle0(0, b) P−-tree, the flag parts are all 0. This indicates that
all the newly added states (with probabilities) are contributed by the environment and
Boolean condition b is satisfied for all these newly added states. Further, there are no
(
√
, ∅, σ) snapshots in an idle0(0, b) P−-tree. This means that all actions reflected in

an idle0(0, b) P−-tree is instantaneous. Similarly, the concept of idle0(0−, b) P−-tree
is defined in the above definition.

Now we can also define the concept of idle(tag, b) P−-tree (tag = 0 or 0−, and b
is a Boolean condition). An idle(tag, b) tree not only can contain instantaneous action,
but also can contain time delay snapshots.

(1’) st is idle(tag, b), where st = wait or ter.

(2’) {|(tag, pi, σi) : Si | i ∈ I|} is idle(tag, b), if for any i ∈ I , bi(σ) and ∀X ∈ Si •
X is idle(tag, b).

(3’) {|(√, ∅, σ) : S|} is idle(tag, b), if b(σ) and ∀X ∈ S •X is idle(tag, b).

where, tag = 0 or 0−. �

Based on the definitions ofP -trees and P−-trees, the denotational semantics for process
P can be formalized in the form below.

232 H. Zhu et al.

{ (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ }
Here, U contains a set of P−-trees and Σ stands for the set containing all snapshots.

4 Denotational Semantics for PTSC Statements

Based on the introduction of P -tree (and P−-tree), this section is to study the deno-
tational semantics for PTSC, including sequential constructs, timed constructs, proba-
bilistic choice, nondeterminism, guarded choice and parallel composition.

4.1 Sequential Constructs

Assignment. Assignment is considered as an atomic action. Before the assignment is
scheduled, the environment may also have a chance to be scheduled to perform actions.

Firstly, we define function append(T, x, e), which appends the assignment of vari-
able x with e to P−-tree T .

append({|(tagi, μi, σi) : Ui | i ∈ I|}, x, e)
=df {|(tagi, μi, σi) : { attach(σi, Ui, x, e) } | i ∈ I|}

where,

attach(σ, U, x, e)

=df ((1, 1, σ[e/x]) : {ter})� U = {ter}�
(U �U = {wait}∨U = {div}� (∀T ∈ U •append(T, x, e)))

Here, attach(σ, U, x, e) means adding a new snapshot (the update of variable x with
e) to the terminating leaf of all P−-trees in U . Its definition can be defined recursively.
When a leaf is encountered, if it is a terminating leaf, the adding will be performed. On
the other hand, when divergence leaf or waiting leaf is encountered, the adding will not
be performed.

Similarly,

append((tag, μ, σ) : U, x, e)

=df (tag, μ, σ) : { attach(σ, T, x, e) | ∀T ∈ U }
Then, the semantics of x := e can be described as the tree behaviour shown below.
Formula idle(0−, true) here indicates that, before the assignment is scheduled, the en-
vironment can have chances to perform instantaneous actions. The symbol 0− indicates
that, after the environment’s instantaneous actions, the process itself will perform as-
signment action.

[[x := e]]

=df { append((tag, μ, σ) : U, x, e) | (tag, μ, σ) ∈ Σ ∧
∀X ∈ U •X is idle0(0−, true) }

Chaos. For Chaos statement, its denotational semantics can be defined as below:

[[Chaos]] =df { (tag, μ, σ) : {div} | (tag, μ, σ) ∈ Σ }

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 233

Sequential Composition. (P ; Q) behaves like P before P terminates, and then be-
haves like Q afterwards.

[[P ; Q]] =df [[P]] ; [[Q]]

Conditional. The definition of conditional can be defined as below.

[[if b then P elseQ]]

=df { (tag, μ, σ) : U � b(σ)� (tag, μ, σ : V)

| (tag, μ, σ) ∈ Σ ∧ (tag, μ, σ) : U ∈ [[P]]

∧ (tag, μ, σ) : V ∈ [[Q]] }
Iteration. In order to define the semantics of iteration, we define the partial order be-
low.

{|(tagi, μi, σi) : Ui | i ∈ I|} � {|(tagj, μj , σj) : Vj} | j ∈ J |}
=df ∀i ∈ I • ∃j ∈ J • (tagi, μi, σi) : Ui ∈ {|(tagi, μi, σi) : Ui|} ∧

(tagj , μj , σj) : Vj ∈ {|(tagj, μj , σj) : Vj |} ∧
(tagi, μi, σi) = (tagj , μj , σj) ∧
∀X ∈ Ui • ∃Y ∈ Vj • (X � Y ∧X ≈ Y)

where, the equivalence relation ≈ on trees will be defined in section 5.
Then we can use this order to give the order � for programs. Based on this, we can

give the definition for iteration. The iteration construct is defined in the same way as its
counterpart in conventional programming language.

[[while b do P]] =df μX • [[if b then (P ;X) else II]]

where:

(1) [[II]] =df { (tag, μ, σ) : {ter} | (tag, μ, σ) ∈ Σ }
(2) The notation μX •F (X) denotes the weakest fixed point of the monotonic function

F .

4.2 Timed Constructs

Time Delay. Firstly we consider the time delay statement. The definition is based on
two tick and tick′ functions.

tick′((tag, μ, σ) : {st})

=df

{
(tag, μ, σ) : {st} if st = wait or div

(tag, μ, σ) : {(√, ∅, σ) : {ter}} if st = ter

and

tick′((tag, μ, σ) : U) =df (tag, μ, σ) : {tick(X) | X ∈ U}
Then, a further function tick can be defined as:

tick({|(tagi, μi, σi) : Ui | i ∈ I|})

234 H. Zhu et al.

=df {| tick′((tagi, μi, σi) : Ui) | i ∈ I |}
Based on the above definitions, we can have the semantics of #1 via the tree behaviour.

[[#1]] =df { (tag, μ, σ) : {tick(X) | X is idle0(0, true)} | (tag, μ, σ) ∈ Σ }
[[#n]] =df [[#1]] ; [[#(n− 1)]]

For #1, before time advancing, the environment may perform assignments with cer-
tain probabilities at the current time point. This behaviour can be expressed as an
idle0(0, true) tree. For the behaviour of #n, it can be defined recursively.

Event Guard. Now we are ready to consider the event triggering behaviour. Firstly
we define the concept of trig(b, f) (f = 0 or 1) as below.

{| (0, pi, σi) : Ui | i ∈ I |} is trig(b, f),

if it satisfies the following conditions
⎛

⎜
⎝

∃i ∈ I • b(σi) ∧
∀i ∈ I • b(σi) ⇒ Ui = {ter} ∧
∀i ∈ I • ¬b(σi) ⇒ ∀X ∈ Ui •X is leaffired(b, f)

⎞

⎟
⎠

For the concept of leaffired(b, f) P−-tree (f = 0 or 1), it can be defined as below.

(1) {| (0, pi, σi) : Ui | i ∈ I |} is leaffired(b, f) (f = 0 or 1) if it satisfies the follow-
ing condition

∀i ∈ I •
(
b(σi) ⇒ Ui = {ter} ∧
¬b(σi) ⇒ ∀X ∈ Ui •X is leaffired(b, f)

)

(2) {| (√, ∅, σ) : U |} is leaffired(b, 1) if it satisfies the following condition
(
b(σ) ⇒ U = {ter} ∧
¬b(σ) ⇒ ∀X ∈ U •X is (leaffired(b, 0) ∨ leaffired(b, 1))

)

For @b, there are two firing cases. The first case is that event @b is fired at the initial
state, which is denoted as formula Immefired(b). The second case is that it waits for
the environment to fire it. This case can be described using two formulae Await(b, 1)
and Trig(b, 1). Formula Await(b, 1) indicates that all the environment behaviour can-
not fire @b. Trig(b, 1) indicates that @b is fired finally. Then the semantics of @ b can
be defined as:

[[@ b]] =df Immefired(b) ∪ (Await(b, 1) ; Trig(b, 1))

where,

Immefired(b)

=df { (tag, μ, σ) : {ter} | (tag, μ, σ) ∈ Σ ∧ b(σ) }
Await(b, f)

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ¬b(σ)
∧ ∀X ∈ U• (f = 0∧X is idle0(0,¬b) ∨ f = 1∧X is idle(0,¬b)) }

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 235

Trig(b, f)

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ¬b(σ) ∧ ∀X ∈ U •X is trig(b, f) }
Here, f = 0, 1.

4.3 Probabilistic Nondeterminism

Firstly we consider the definition for probabilistic nondeterminism P �r Q.

[[P �r Q]]

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ∀X ∈ U • X is idle0(0−, true) } ;
{ (tag, μ, σ) : {T (r)} | (tag, μ, σ) ∈ Σ }

where,

T (r) =df {| (1, r, σ) : U, (1, 1− r, σ) : V |}
and, (tag, μ, σ) : U ∈ [[P]], (tag, μ, σ) : V ∈ [[Q]]

Moreover, we can give the definition for P �Q.

[[P �Q]]

=df { (tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧ ∀X ∈ U • X is idle0(0−, true) } ;
{ (tag, μ, σ) : {T (r) | 0 ≤ r ≤ 1} | (tag, μ, σ) ∈ Σ }

4.4 Guarded Choice

As mentioned earlier, there are five types of guarded choice. Now we give the denota-
tional semantics for these five types of guarded choice.

Assignment Guarded Choice. Firstly, we consider the assignment guarded choice,
which is composed of a set of assignment guarded components.

Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
Then,

[[P]]

=df {((tag, μ, σ) : idle0(0−, true)) ; ImmeAssi({P}) | (tag, μ, σ) ∈ Σ}
where,

ImmeAssi(S) =df {(tag, μ, σ) : {T (P) | P ∈ S} | (tag, μ, σ) ∈ Σ}
T (P) =df {| ∀j ∈ Ji • if bij then (1, pi, σij) : Vij

| i ∈ I ∧ (1, pi, σij) : Vij ∈ [[Pij]] |}
The formula idle0(0−, true) here indicates that, before any assignment is scheduled,
the environment will have chances to perform the instantaneous actions. The execution

236 H. Zhu et al.

of assignment guarded components is expressed by formulae ImmeAssi({P}) and
T (P).

Event Guarded Choice. Now we consider the denotational semantics for the second
type of guarded choice, which is composed of a set of event guarded components.

Let P = []i∈I{@bi Pi}.

Then,

[[P]]

=df Immefired([]i∈I{@bi Pi})
∪ (Await(b, 1) ; Trig(b, 1) ; Imme([]i∈I{@bi Pi}))

where,

b = ∨i∈I bi

Immefired([]i∈I{@bi Pi})
=df {(tag, μ, σ) : U | (tag, μ, σ) ∈ Σ ∧

∃i ∈ I • (bi(σ) ∧ (tag, μ, σ) : U ∈ [[Pi]])}
Time Delay Guarded Choice. For the third type of guarded choice, it is composed of
only one time delay component.

[[[]{#1 P}]] =df [[#1]] ; [[P]]

Guarded Choice Composing of Assignment Guarded Choice and Event Guarded
Choice. For the fourth type of guarded choice, it is composed of a set of assignment
guarded components and a set of event guarded components.

Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}[][]k∈K{@ck Qk} and

P1 = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}.

Then,

[[P]]

=df Immefied([]k∈K{@ck Qk})
∪ (Await(c, 0) ; ImmAssi(P1))

∪ (Await(c, 0) ; Trig(c, 0) ; Imme([]k∈K{@ck Qk}))
where, c = ∨k∈K ck

As the fourth type of guarded choice contains assignment guarded components, the
waiting period of waiting the event guards to be fired is at the current time point. The
formulae Await(c, 0) and Trig(c, 0) are applied.

Guarded Choice Composing of Event Guarded Choice and Time Delay Guarded
Choice. Now we consider the denotational semantics for the fifth type of guarded
choice, which is composed of event guarded choice and time delay guarded choice.

Let P = []i∈I{@bi Pi}[]{#1 R}.

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 237

Then,

[[P]]

=df Immefired([]i∈I{@bi Pi})
∪ (Await(b, 0) ; Trig(b, 0) ; Imme([]i∈I{@bi Pi}))

(Await(b, 0) ; phase1 ; [[R]])

where, b = ∨i∈I bi

phase1 =df { (tag, μ, σ) : {{|(√, ∅, σ) : {ter}|}} | (tag, μ, σ) ∈ Σ }
For the fifth type of guarded choice, the event guards can be fired immediately, or wait-
ing for the environment to fire them. The waiting period should be at the current time
point. If at the current time point, all the events are not fired, then time will advance one
unit. This can be expressed by formula phase1.

Or Construct for Guarded Choice. In order to support the expansion laws of general
parallel composition, we introduce the concept of the or Construct for Guarded Choice.
Below are the two cases for the or Construct.

(1) Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(ckl&(ykl := fkl)Qkl)}.

Then,

[[P or Q]]

=df {((tag, μ, σ) : idle0(0−, true)) ; ImmeAssi({P,Q}) | (tag, μ, σ) ∈ Σ}
(2) Let P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}

[][]m∈M{@cm Rm}
P1 = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}
Q = []k∈K{[qk] choicel∈Lk

(bkl&(ykl := fkl)Qkl)}
[][]m∈M{@cm Rm}

Q1 = []k∈K{[qk] choicel∈Lk
(bkl&(ykl := fkl)Qkl)}

Then,

[[P or Q]]

=df Immefired([]m∈M{@cmRm})
∪ (Await(c, 0) ; ImmAssi({P1, Q1}))
∪ (Await(c, 0) ; Trig(c, 0) ; Imme([]m∈M{@cmRm}))

where, c = ∨m∈M cm

4.5 Probabilistic Parallel Composition

Now we consider the probabilistic parallel composition. In order to deal with the defini-
tion for probability parallel composition, we first define the probabilistic merge operator
⊗r. This can be done by the case analysis.

238 H. Zhu et al.

Firstly we consider the case that P can perform probabilistic atomic actions initially.
If Q can also perform probabilistic atomic actions initially, P ⊗r Q can also perform
probabilistic atomic actions initially from both P and Q. And the probability of these
assignments needs to be updated with the probability parameter r (or 1− r).

If Q can observe the environment’s behaviour and its subsequent behaviour is as-
signment, we regard P ⊗r Q as undefined. This consideration is reflected in (1.b) and
it can support the understanding of (1.a).

If Q can observe the environment’s behaviour and its subsequent behaviour is not
assignment, their merge P ⊗r Q can also perform these assignments from P without
any change of the probabilities. This understanding supports the definition of event
firing behaviour.

On the other hand, if Q can do time delay, their merge P ⊗r Q is undefined. This
is because assignment is the instantaneous behavior and the two process cannot be
compared.

Below are the detailed definition for the above four cases when P can perform prob-
abilistic atomic actions initially.

(1) If P = {|(1, pi, σi) : Ui | i ∈ I|} and

(1.a) if Q = {|(1, qk, σk) : Vk | k ∈ K|}, then

P ⊗r Q

=df {| (1, r × pi, σi) : {X ⊗r Q | X ∈ Ui},
(1, (1− r)× pk, σk) : {P ⊗r Y | Y ∈ Vk} | i ∈ I ∧ k ∈ K |}

(1.b) if Q = {|(0−, qk, σk) : Vk | k ∈ K|}, then P ⊗r Q =df undefined

(1.c) if Q = {|(0, qk, σk) : Vk | k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗r fji(X) is well-defined

P ⊗r Q =df {|(1, pi, σi) : {X ⊗r fji(X) | X ∈ Ui} | i ∈ U |}
(1.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗r Q =df undefined

Secondly, we consider the case when P is in observing the environment’s behaviour
and its subsequent behaviour is probabilistic assignment. Item (2.a) is similar to (1.b).
The analysis for (2.b) is also similar to (1.b). Furthermore, If Q is in observing the
environment’s behaviour and its subsequent behaviour is not probabilistic assignment,
we regard their merge (P ⊗rQ) is still in observing the environment’s behaviour and its
subsequent behaviour is still assignment action. On the other hand, item (2.d) considers
the case that Q can let time advance. As P is currently in observing the environment’s
instantaneous action, we regard P ⊗r Q as undefined in this case.

(2) If P = {|(0−, pi, σi) : Ui} | i ∈ I|} and

(2.a) if Q = {|(1, qk, σk) : Vk} | k ∈ K|}, then P ⊗r Q =df undefined

(2.b) if Q = {|(0−, qk, σk) : Vk}| k ∈ K|}, then P ⊗r Q =df undefined

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 239

(2.c) if Q = {|(0, qk, σk) : Vk}| k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗r fji(X) is well-defined

P ⊗r Q =df {|(0−, pi, σi) : {X ⊗r fji(X) | X ∈ Ui} | i ∈ I|}
(2.d) if Q = {|(√, ∅, σ) : V }|}, then P ⊗r Q =df undefined

Thirdly, we consider the case that P is in observing the environment’s behaviour and its
subsequent behaviour is not probabilistic assignment. Item (3.a) and (3.b) are similar
to (1.c) and (2.c) respectively. On the other hand, if Q is also in observing the envi-
ronment’s behaviour and its subsequent behaviour is not probabilistic assignment, their
merge (P ⊗r Q) belongs to the same execution type. The consideration for (3.d) is
similar to (2.d).

(3) If P = {|(0, pi, σi) : Ui | i ∈ I|} and

(3.a) if Q = {|(1, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q is the same as (1.c)

(3.b) if Q = {|(0−, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q is the same as (2.c)

(3.c) if Q = {|(0, pk, σk) : Vk} | k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗r fji(X) is well-defined

P ⊗r Q =df {|(0, pi, σi) : {X ⊗r fji(X) | X ∈ Ui} | i ∈ I|}
(3.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗r Q =df undefined

Lastly, we consider that the case that P can perform time delay initially. Item (4.a), (4.b)
and (4.c) are all about performing or observing instantaneous actions initially. Hence,
their merges (P ⊗r Q) are considered as undefined. Item (4.d) indicates that Q can also
let time advance. Therefore, their merge (P ⊗r Q) can also do time advancing initially.

(4) If P = {|(√, ∅, σ) : U}|} and

(4.a) if Q = {|(1, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q =df undefined

(4.b) if Q = {|(0−, pk, σk) : Vk} | k ∈ K|}, then P ⊗r Q =df undefined

(4.c) if Q = {|(0, pk, σk) : Vk | k ∈ K|}, then P ⊗r Q =df undefined

(4.d) if Q = {|(√, ∅, σ) : V |}, then there exists a bijection f : U → V such that
∀X ∈ U •X ⊗r f(X) is well-defined

P ⊗r Q =df {|(√, ∅, σ) : {X ⊗r f(X) | X ∈ U}|}
Further, we also need the table below to complete the definition of ⊗r.

div ⊗r div =df div div ⊗r wait =df div div ⊗r ter =df div

wait⊗r div =df div wait⊗r wait =df wait wait⊗r ter =df wait

ter ⊗r div =df div, ter ⊗r wait =df wait ter ⊗r ter =df ter

240 H. Zhu et al.

We also need the following definition for further support. Here we assume that T is not
empty (i.e., T �= st).

div ⊗r T =df div T ⊗r div =df div

ter ⊗r T =df T T ⊗r ter =df T

Further, if T �= div, then wait⊗r T = wait and T ⊗r wait =df wait

Based on the definition of ⊗r, now we can give the semantics for probabilistic parallel
programs.

[[P ‖r Q]]

=df { (tag, μ, σ) : {X ⊗r Y | X ∈ U ∧ Y ∈ V ∧ X ⊗r Y is well-defined}
| (tag, μ, σ) ∈ Σ ∧ (tag, μ, σ) : U ∈ [[P]] ∧ (tag, μ, σ) : V ∈ [[Q]] }

4.6 General Parallel Composition

Now we start to define the semantics for general parallel composition ‖. We first give
the definition for the merge operator ⊗, which is symmetric.

Firstly we consider the case that P can perform probabilistic atomic actions initially.

(1) If P = {|(1, pi, σi) : Ui | i ∈ I|} and

(1.a) if Q = {|(1, qk, σk) : Vk} | k ∈ K|}, then P ⊗Q =df undefined

(1.b) if Q = {|(tag, qk, σk) : Vk} | k ∈ K|} (tag = 0− or 0), then there exists a
permutation j1, j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and
there exists a bijection fi : Ui → Vji such that ∀X ∈ Ui • X ⊗ fji(X) is
well-defined

P ⊗Q =df {|(1, pi, σi) : {X ⊗ fji(X) |X ∈ Ui} | i ∈ I|}
(1.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗Q =df undefined

Secondly, we consider the case that P is in the observing the environment’s behaviour
and its subsequent behaviour is the probabilistic assignment.

(2) If P = {|(0−, pi, σi) : Ui | I ∈ I|} and

(2.b) if Q = {|(tag, qk, σk) : Vk | k ∈ K|} (tag = 0− or 0), then there exists a
permutation j1, j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and
there exists a bijection fi : Ui → Vji such that ∀X ∈ Ui • X ⊗ fji(X) is
well-defined

P ⊗Q =df {|(0−, pi, σi) : {X ⊗ fJi(X) | X ∈ Ui} | i ∈ I|}
(2.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗Q =df undefined

Thirdly, we consider the case that P is in the observing the environment’s behaviour
and its subsequent behaviour is not the probabilistic assignment.

(3) If P = {|(0, pi, σi) : Ui | i ∈ I|} and

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 241

(3.c) if Q = {|(0, qk, σk) : Vk | k ∈ K|}, then there exists a permutation j1,
j2, · · · , j|I| of K such that ∀i ∈ •pi = qji and σi = σji , and there exists a
bijection fi : Ui → Vji such that ∀X ∈ Ui •X ⊗ fji(X) is well-defined

P ⊗Q =df {|(0, pi, σi) : {X ⊗ fji(X) |X ∈ Ui} | i ∈ I|}
(3.d) if Q = {|(√, ∅, σ) : V |}, then P ⊗Q =df undefined

Fourthly, we consider the case that P can perform time delay initially.

(4) If P = {|(√, ∅, σ) : U |} and

(4.d) if Q = {|(√, ∅, σ) : V |}, then there exists a bijection f : U → V such that
∀X ∈ U •X ⊗ f(X) is well-defined

P ⊗r Q =df {|(√, ∅, σ) : {X ⊗ f(X) | X ∈ U}|}
For the definition of st ⊗ st′ and st ⊗ T (st can be ter, wait or div), they are similar
to those in the definition of ⊗r.

Based on the above defined merge operator ⊗ , now we are ready to give the seman-
tics for general parallel composition.

[[P ‖ Q]]

=df { (tag, μ, σ) : {X ⊗ Y | X ∈ U ∧ Y ∈ V ∧ X ⊗ Y is well-defined}
| (tag, μ, σ) ∈ Σ ∧ (tag, μ, σ) : U ∈ [[P]] ∧ (tag, μ, σ) : V ∈ [[Q]] }

5 Program Equivalence

In this section we are exploring some flattening relations betweenP -trees (orP−-trees).
It will be used in giving the definitions for the concept of tree equivalence. Based on
the concept of the equivalence of P -trees (or P−-trees), we can define the equivalence
between PTSC programs.

Below we define a set of flattening relations Ri and R′
i (i = 0, 1, 2, 3). Based on

these flattening relations, we define R =df Id ∪ ⋃
i∈{0,1,2,3}(Ri ∪R−1

i) and R′ =df

Id ∪⋃
i∈{0,1,2,3}(R

′
i ∪R′−1

i).
For {|(tag, 1, σ) : U, (tag, 0, σ) : V }|}, due to the 0 probability, the branch (tag, 0,

σ) : V can be eliminated. This means that the two P−-trees {|(tag, 1, σ) : U, (tag, 0,
σ) : V }|} and {|(tag, 1, σ) : U |} should be equivalent. Therefore, we give the definition
of flattening relation R0.

Definition 5.1 (Flattening Relation R0)

(1) {|(tag, 1, σ) : U, (tag, 0, σ) : V }|} R0 {|(tag, 1, σ) : W |}, where U RW 1.

(2) If ∀X ∈ U • ∃Y ∈ Y • (X,Y) ∈ R0 and ∀Y ∈ V • ∃X ∈ U • (X,Y) ∈ R0,

then (tag, μ, σ) : U R′
0 (tag, μ, σ) : V . �

1 Let U and V be two sets of P−-trees and S be a relation between P−-trees. The notation
U S V means that ∀X ∈ U •∃Y ∈ Y •(X, Y) ∈ S and ∀Y ∈ V •∃X ∈ U •(X, Y) ∈ S

242 H. Zhu et al.

For {{|(1, 1, σ) : U |}} at the initial state (tag, μ, σ), the contributed snapshot (1, 1, σ)
indicates that the process performs assignment-like action with probability 1 and the
data state remains the unchanged. This means that the contributed new snapshot can be
eliminated, indicating that (tag, μ, σ) : {{|(1, 1, σ) : U |}} is the same as (tag, μ, σ) : U .
We give the definition of flattening relation R1 for aiming this.

Definition 5.2 (Flattening Relation R1)

(1) (tag, μ, σ) : {{|(1, 1, σ) : U |}} R′
1 (tag, μ, σ) : V , where U RV .

(2) If (tagi, μi, σi) : Ui R
′
1 (tagi, μi, σi) : Vi, i ∈ I

then {|(tagi, μi, σi) : Ui | i ∈ I}|} R1{|(tagi, μi, σi) : Vi | i ∈ I}|} �

For P−-tree {|(1, r, σ) : U, (1, 1 − r, σ) : U |} at the initial state (tag, μ, σ), we find
that the two probabilistic branches of the P−-tree enter into the same process. The two
data sates are the same as the σ, the sum of the two corresponding probabilities are 1,
and the two subsequent behaviours are the same. Therefore, we can say the behaviour
of the P−-tree {|(1, r, σ) : U, (1, 1 − r, σ) : U |} at the initial state (tag, μ, σ) should
be the same as the behaviour (tag, μ, σ) : U . Our definition for flattening relation R2 is
for achieving this kind of equivalence.

Definition 5.3 (Flattening Relation R2)

(1) (tag, μ, σ) : { {|(1, r, σ) : U, (1, 1− r, σ) : U |} } R′
2 (tag, μ, σ) : V ,

where U RV .

(2) (tag, μ, σ) : {{|(1, r, σ) : U, (1, 1− r, σ) : U |} | r ∈ A} R′
2 (tag, μ, σ) : V ,

where U RV

(3) If (tagi, μi, σi) : Ui R
′
2 (tagi, μi, σi) : Vi, i ∈ I

then {|(tagi, μi, σi) : Ui} | i ∈ I|} R2 {|(tagi, μi, σi) : Vi | i ∈ I}|} �

Definition 5.4 (Flattening Relation R3)

(1) Define P R′
3 Q, where:

P = (tag, μ, σ) : {{|(1, p, σ) : U, (1, 1− p, σ) : {{|(1, q, σ) : V, (1, 1− q, σ) : W |}}|}}
Q = (tag, μ, σ) : {{|(1, y, σ) : {{|(1, x, σ) : U ′, (1, 1− x, σ) : V ′}|}}, (1, 1− y, σ) : W ′}|}}
where, U RU ′, V RV ′, W RW ′,

and, x = p/(p+ q − p× q), y = p+ q − p× q

(2) If (tagi, μi, σi) : Ui R
′
3 (tagi, μi, σi) : Vi, i ∈ I

then {|(tagi, μi, σi) : Ui | i ∈ I|} R3 {|(tagi, μi, σi) : Vi} | i ∈ I|} �

In the above definition for flattening relation R3, for P and Q, both of them have three
execution branches (i.e., U , V and W). The three new data states for U , V and W
(i.e., U ′, V ′ and W ′) are the same as the initial data state of P and Q. Further, the
probabilities to reach to U (i.e., U ′) for P and Q are both p, whereas the probabilities
to reach to V (i.e., V ′) for P and Q are both (1 − p)× q. And the probability to reach
to W (i.e., W ′) for both P and Q are (1 − p) × (1 − q). This indicates that P and Q
should have the same behaviour.

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 243

Based on the above definitions of flattening relations and R (and R′), we know that
R (and R′) is an equivalence relation. Let ≈ and ≈′ stand for the largest relations
satisfying R and R′ respectively.

Now we start to consider program equivalence. Its definition can be based on the
equivalence ≈ and ≈′ (for P−-trees and P -trees), shown below.

Definition 5.5 (Program Equivalence)

P ≈ Q

=df ∀(tag, μ, σ) : U ∈ [[P]], (tag, μ, σ) : V ∈ [[Q]] •
(tag, μ, σ) : U ≈′ (tag, μ, σ) : V �

6 Algebraic Laws

In this section we explore the algebraic laws for PTSC programs based on the defined
program equivalence. For assignment, conditional, iteration, nondeterministic choice
and sequential composition, our language enjoys similar algebraic properties as those
reported in [4, 7]. In what follows, we shall only focus on novel algebraic properties
with respect to time, probabilistic nondeterministic choice and parallel composition.

6.1 Sequential Constructs

Two consecutive time delays can be combined into a single one, where the length of the
delay is the sum of the original two lengths.

(delay-1) #n; #m ≈ #(n+m)

Probabilistic nondeterministic choice is idempotent.

(prob-1) P �p P ≈ P

However, it is not purely symmetric and associative. Its symmetry and associativity rely
on the change of the associated probabilities:

(prob-2) P �p1 Q ≈ Q �1−p1 P

(prob-3) P �p (Q �q R) ≈ (P �x Q) �y R

where x = p/(p+ q − p× q) and y = p+ q − p× q

6.2 Parallel Construct

Probabilistic parallel composition is also not purely symmetric and associative. Its sym-
metry and associativity rely on the change of the associated probabilities as well.

(par-1) P ‖p Q ≈ Q ‖1−p P

(par-2) P ‖p (Q ‖q R) ≈ (P ‖x Q) ‖y R

where, x = p/(p+ q − p× q) and y = p+ q − p× q

For general parallel composition, it is purely symmetric and associative.

244 H. Zhu et al.

(par-1’) P ‖ Q ≈ Q ‖ P

(par-2’) P ‖ (Q ‖ R) ≈ (P ‖ Q) ‖ R

In what follows we give a collection of parallel expansion laws, which enable us to ex-
pand a probabilistic parallel composition to a guarded choice construct. As mentioned
earlier, there exist five types of guarded choice. To take into account a probabilistic
parallel composition of two arbitrary guarded choices, we end up with fifteen different
expansion laws. Similarly, for general parallel composition, we also have fifteen differ-
ent expansion laws. We select some parallel expansion cases for both probabilistic and
general parallel compositions.

Firstly, we consider the case that both of the two parallel components are with the
form of assignment-guarded choice. The expansion law is shown is (par-3-1).

(par-3-1) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl)Pkl)}

Then
P ‖r Q

≈ []i∈I{[r × pi] choicej∈Ji(bij&(xij := eij)Pij ‖r Q}
[][]k∈K{[(1− r) × qk] choicel∈Lk

(bkl&(xkl := ekl)P ‖r Qkl}
and

P ‖ Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ‖ Q}
or []k∈K{[qk] choicel∈Lk

(bkl&(xkl := ekl)P ‖ Qkl}
Next we consider the case that one parallel component is with the form of assignment
guarded choice and another component is with the form of event guarded choice. Law
(par-3-2) below shows the expansion law for probabilistic and general parallel compo-
sition. The probability factor for the initial step expansion does not affect for the two
parallel compositions.

(par-3-2) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and Q = []k∈K{@ck Qk}
Then

P �Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij �Q}
[][]k∈K{@ck P �Qk}

where, � ∈ { ‖r, ‖ }.

Now we consider the case that one parallel component is with the form of assignment
guarded choice and another component is with the form of time delay component. Only
assignment guards can be scheduled initially. This case is expressed in law (par-3-3).

(par-3-3) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and Q = []{#1 R}

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 245

Then

P �Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij �Q}
where, � ∈ { ‖r, ‖ }.

If one parallel component is with the form of assignment guarded choice and another
parallel component is with the form of the guarded choice composing of assignment
guarded components and event guarded components. Law (par-3-4) shows the expan-
sion for the probabilistic parallel composition and general parallel composition for this
case.

(par-3-4) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl)Qkl)}

[][]m∈M{@cm Rm}
Then

P ‖r Q
≈ []i∈I{[r × pi] choicej∈Ji(bij&(xij := eij)Pij ‖r Q)}
[][]k∈K{[(1− r) × qk] choicel∈Lk

(bkl&(xkl := ekl)P ‖r Qkl}
[][]m∈M{@ck P ‖r Rm}
P ‖ Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ‖ Q)}
[][]m∈M{@ck P ‖ Rm}
or

[]k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl)P ‖ Qkl}

[][]m∈M{@ck P ‖ Rm}
Now we consider the case that both of the two parallel components are of the form of
event guarded choice. For probabilistic parallel composition and general parallel com-
position, there are three event triggered cases. Also the probability factor does not have
effects in the initial step expansion. This is illustrated in law (par-3-6).

(par-3-6) Let P = []i∈I{@bi Pi} and Q = []j∈J{@cj Qj}
Then

P �Q

≈ []i∈I{@(bi ∧ ¬c) Pi �Q}[][]j∈J{@(cj ∧ ¬b) P �Qj}
[][]i∈I∧j∈J{@(bi ∧ cj) Pi �Qj}

where, � ∈ { ‖r, ‖ }
b = ∨i∈I bi, and c = ∨j∈J cj

We now move to the case that both of the two parallel components are of the form com-
prising assignment-guarded components and event-guarded components. Law

246 H. Zhu et al.

(par-3-13) stands for the expansion for probabilistic parallel composition and general
parallel composition.

(par-3-13) Let

P = []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij)}[][]k∈K{@bk Rk}
and Q = []l∈L{[ql] choicem∈Ml

(clm&(xlm := elm)Plm)}[][]n∈N{@cn Tn}
Then

P ‖r Q
≈ []i∈I{[r × pi] choicej∈Ji(bij&(xij := eij)Pij ‖r Q)}
[][]l∈L{[(1− r)× ql] choicem∈Ml

(clm&(xlm := elm)P, ‖r Qlm)}
[][]k∈K{@(bk ∧ ¬c) Rk ‖r Q}[][]n∈N{@(cn ∧ ¬b) Rk ‖r Q}
[][]k∈K∧n∈N{@(bk ∧ cn) Rk ‖r Qn}
P ‖ Q

≈ []i∈I{[pi] choicej∈Ji(bij&(xij := eij)Pij ‖ Q)}
[][]k∈K{@(bk ∧ ¬c) Rk ‖ Q}[][]n∈N{@(cn ∧ ¬b) Rk ‖ Q}
[][]k∈K∧n∈N{@(bk ∧ cn) Rk ‖ Qn}
or

[]l∈L{[ql] choicem∈Ml
(clm&(xlm := elm)P, ‖ Qlm)}

[][]k∈K{@(bk ∧ ¬c) Rk ‖ Q}[][]n∈N{@(cn ∧ ¬b) Rk ‖ Q}
[][]k∈K∧n∈N{@(bk ∧ cn) Rk ‖ Qn}
where, b = ∨k∈K bk and c = ∨n∈N cn

7 Conclusion

Recently we have proposed the language PTSC [19], which integrates probability, time
and shared-variable concurrency. In this paper, we studied the denotational semantics
for PTSC. For dealing with the above three features, as well as the nondeterminism, we
introduced the concept of P -tree in our denotational semantics. Based on the P -tree,
we defined the denotational semantics for each PTSC statement. In order to deal with
program equivalence based on the achieved denotational semantics, we defined a set
of flattening relations. We have explored a set of algebraic laws for PTSC, especially a
set of parallel expansion laws. The correctness of these laws is based on the concept of
program equivalence.

For the future, we would like to link the denotational semantics with operational
semantics and algebraic semantics respectively. Moreover, the deduction approach for
PTSC is also challenging to work on.

Acknowledgement. This work is supported by National Basic Research Program of
China (No. 2011CB302904), National High Technology Research and Development
Program of China (No. 2011AA010101 and No. 2012AA011205), National Natural
Science Foundation of China (No. 61061130541 and No. 61021004), and Shanghai
Leading Academic Discipline Project (No. B412).

Denotational Semantics for a Probabilistic Timed Shared-Variable Language 247

References

1. den Hartog, J.: Probabilistic Extensions of Semantic Models. PhD thesis, Vrije University,
The Netherlands (2002)

2. den Hartog, J., de Vink, E.: Mixing up nondeteminism and probability: A premliminary
report. Electronic Notes in Theoretical Computer Science 22 (1999)

3. den Hartog, J., de Vink, E., de Bakker, J.: Metric semantics and full abstractness for action
refinement and probabilistic choice. Electronic Notes in Theoretical Computer Science 40
(2001)

4. He, J.: Provably Correct Systems: Modelling of Communication Languages and Design
of Optimized Compilers. The McGraw-Hill International Series in Software Engineering
(1994)

5. He, J., Seidel, K., McIver, A.: Probabilistic models for the guarded command language.
Science of Computer Programming 28(2-3), 171–192 (1997)

6. He, J., Zhu, H.: Formalising Verilog. In: Proc. ICECS 2000: IEEE International Conference
on Electronics, Circuits and Systems, pp. 412–415. IEEE Computer Society Press (December
2000)

7. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall International Series
in Computer Science (1998)

8. McIver, A., Morgan, C.: Partial correctness for probabilistic demonic programs. Theoretical
Computer Science 266(1-2), 513–541 (2001)

9. McIver, A., Morgan, C.: Abstraction, Refinement and Proof of Probability Systems. Mono-
graphs in Computer Science. Springer (October 2004)

10. McIver, A., Morgan, C., Seidel, K.: Probabilistic predicate transformers. ACM Transactions
on Programming Languages and Systems 18(3), 325–353 (1996)

11. Ndukwu, U., Sanders, J.W.: Reason about a distributed probabilistic system. Technical Re-
port 401, UNU/IIST, P.O. Box 3058, Macau SAR, China (August. 2008)

12. Nissanke, N.: Realtime Systems. Prentice Hall International Series in Computer Science
(1997)

13. Núñez, M.: Algebraic theory of probabilistic processes. The Journal of Logic and Algebraic
Programming 56, 117–177 (2003)

14. Núñez, M., de Frutos-Escrig, D.: Testing semantics for probabilistic LOTOS. In: Proc
FORTE 1995: IFIP TC6 Eighth International Conference on Formal Description Techniques,
Montreal, Canada. IFIP Conference Proceedings, vol. 43, pp. 367–382. Chapman and Hall
(1996)

15. Núñez, M., de Frutos-Escrig, D., Dı́az, L.F.L.: Acceptance Trees for Probabilistic Processes.
In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 249–263. Springer,
Heidelberg (1995)

16. Park, S., Pfenning, F., Thrun, S.: A probabilistic language based upon sampling functions. In:
Proc. POPL 2005: 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 171–182. ACM (January 2005)

17. Zhu, H.: Linking the Semantics of a Multithreaded Discrete Event Simulation Language.
PhD thesis, London South Bank University (February 2005)

18. Zhu, H., He, J., Bowen, J.P.: From algebraic semantics to denotational semantics for verilog.
Innovations in Systems and Software Engineering: A NASA Journal 4(4), 341–360 (2008)

19. Zhu, H., Qin, S., He, J., Bowen, J.P.: PTSC: probability, time and shared-variable concur-
rency. Innovations in Systems and Software Engineering: A NASA Journal 5(4), 271–284
(2009)

20. Zhu, H., Yang, F., He, J., Bowen, J.P., Sanders, J.W., Qin, S.: Linking operational semantics
and algebraic semantics for a probabilistic timed shared-variable language. J. Log. Algebr.
Program. 81(1), 2–25 (2012)

	Denotational Semantics for a Probabilistic Timed Shared-Variable Language
	Introduction
	The Language PTSC
	The Denotational Semantic Model for PTSC
	Denotational Semantics for PTSC Statements
	Sequential Constructs
	Timed Constructs
	Probabilistic Nondeterminism
	Guarded Choice
	Probabilistic Parallel Composition
	General Parallel Composition

	Program Equivalence
	Algebraic Laws
	Sequential Constructs
	Parallel Construct

	Conclusion

