
Timed Automata Patterns
Jin Song Dong, Ping Hao, Shengchao Qin, Jun Sun, and Wang Yi

Abstract—Timed Automata have proven to be useful for specification and verification of real-time systems. System design using

Timed Automata relies on explicit manipulation of clock variables. A number of automated analyzers for Timed Automata have been

developed. However, Timed Automata lack composable patterns for high-level system design. Specification languages like Timed

Communicating Sequential Process (CSP) and Timed Communicating Object-Z (TCOZ) are well suited for presenting compositional

models of complex real-time systems. In this work, we define a set of composable Timed Automata patterns based on hierarchical

constructs in time-enriched process algebras. The patterns facilitate the hierarchical design of complex systems using Timed

Automata. They also allow a systematic translation from Timed CSP/TCOZ models to Timed Automata so that analyzers for Timed

Automata can be used to reason about TCOZ models. A prototype has been developed to support system design using Timed

Automata patterns or, if given a TCOZ specification, to automate the translation from TCOZ to Timed Automata.

Index Terms—Timed Automata, timed patterns, TCOZ, UPPAAL.

Ç

1 INTRODUCTION

SPECIFICATION and verification of real-time systems are
important research topics that have practical implica-

tions. A popular approach for specifying real-time systems
relies on the graphical notation Timed Automata [2], [35].
Timed Automata are powerful in designing real-time models
with explicit clock variables. Real-time constraints are
captured by explicitly setting/resetting clock variables. A
number of mechanized verification support for Timed
Automata have proven to be successful (e.g., UPPAAL,
KRONOS, TEMPO, RED, and Timed COSPAN). However,
designing and verifying real-time systems is becoming an
increasingly difficult task due to the widespread applications
and increasing complexity of such systems. High-level
requirements for real-time systems are often stated in terms
like deadline, time-out, and wait until, partly evidenced by the
case studies presented in [31], [16], [13], [34], [19]. In industrial
case studies of real-time system verification, system require-
ments are often structured into phases, which are then
composed sequentially, in parallel, alternatively, etc. [25],
[32]. Unlike Statechart or process algebras, Timed Automata
lack high-level composable patterns (besides parallel com-
position) for hierarchical design. Timed Automata users often
need to manually cast those terms into a set of clock variables
with carefully calculated clock constraints. The process is
tedious and error prone.

Process algebras, on the other hand, are known for their
bottom-up composibility, which is important to fight against
the complexity of the system design. In the literature, a
number of language-based process algebras have proven to
be useful for specifying complex hierarchical real-time
systems. Timed Communicating Sequential Processes
(Timed CSPs [40]), which extend the classic CSP [27], support
a rich set of compositional constructs to capture system
requirements, e.g., time-out, timed interrupt, timed-event
prefixing, etc. Together with compositional constructs like
external/nondeterministic choice, recursion, and interrupt,
Timed CSP offers a powerful mechanism for designing
complex real-time systems. Timed Communicating Object-Z
(TCOZ [36]) is an integrated high-level formal specification
language that builds on the strengths of Timed CSP and
combines it with Object-Z (OZ) [17] for modeling data and
functional aspects of complex systems. In addition, new
compositional constructs have been introduced, e.g., dead-
line and wait until. The downside of being expressive is that it
is highly nontrivial to mechanically validate TCOZ models.
For safety-critical systems, exposing a possible violation of
system requirements at the specification level is very
important, especially for hard timing constraints. The
challenge of verifying time-enriched process algebras has
long been recognized. A model checker named FDR [39] has
been developed to verify CSP. However, there is no
satisfactory verification support for either Timed CSP or
TCOZ.

Based on the time-proven compositional constructs in
Timed CSP/TCOZ, we develop a set of composable time
patterns for Timed Automata which facilitates high-level
system design using Timed Automata. The patterns cover a
large class of common real-time behavior patterns and yet
can be composed to form new useful patterns. The patterns
are formally defined. By following the formal semantics
(which are originated from their images in time-enriched
process algebras), a high-level design composed of multiple
timed patterns can be flattened to ordinary Timed Auto-
mata automatically. Thus, existing tools like UPPAAL can
be used to verify time patterns with little computational
overhead. On the other hand, the patterns allow a

844 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

. J.S. Dong, P. Hao, and J. Sun are with the School of Computing, National
University of Singapore, 3 Science Drive 2, Singapore 117543, Republic of
Singapore. E-mail: {dongjs, haoping, sunj}@comp.nus.edu.sg.

. S. Qin is with the Department of Computer Science, Durham University,
Science Laboratories, South Road, Durham DH1 3LE, UK.
E-mail: shengchao.qin@durham.ac.uk.

. W. Yi is with the School of Scince and Engineering, North Eastern
University, P.R. China ans the Department of Information Technology,
Uppsala University, Box 337,751 05, Uppsala, Sweden.
E-mail: yi@it.uu.se.

Manuscript received 10 Aug. 2007; revised 12 May 2008; accepted 19 June
2008; published online 23 July 2008.
Recommended for acceptance by R. Cleaveland.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-08-0239.
Digital Object Identifier no. 10.1109/TSE.2008.52.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

systematic translation from Timed CSP/TCOZ models to
Timed Automata so that the state-of-art verification
mechanism for Timed Automata can be used to validate
Timed CSP/TCOZ models.

This work identifies the strengths and weaknesses of
Timed Automata and timed process algebras and develops
new techniques for system modeling, as well as verification.
Instead of comparing the expressiveness of the two
notations (which is of theoretical interest and has been
partially done in [38]), we focus on developing practical
techniques that are beneficial to both TCOZ/Timed CSP
and Timed Automata users. A closely related work is the
hierarchical Timed Automata proposed in [11]. The notion
of hierarchical Timed Automata in [11] is based the notion
of Statechart. Two kinds of Timed Automata composition
have been discussed, i.e., named and-states and or-states. In
our work, the common time patterns introduced in Timed
CSP and beyond have been formally defined, which serve
as a library of building blocks for complex real-time
systems. This work is also related to works on verification
of time-enriched process algebra. In [15], Dong et al. have
developed a model checker for Timed CSP based on
constraint solving. In Brooke’s PhD dissertation [8], a
preliminary PVS encoding of Timed CSP was presented
which relies heavily on user interaction. Another closely
related area of research is Hoenicke and Olderog’s work on
the integration of CSP, OZ, and Duration Calculus (DC)
(named CSP-OZ-DC [28]). By transforming the DC part of a
system model into a Timed Automaton, CSP-OZ-DC
benefits from Timed Automata’s tool support. For instance,
UPPAAL has been used to verify CSP-OZ-DC models. In
our work, UPPAAL is used to verify TCOZ models.
However, our main contribution is the development of the
generic Timed Automata patterns, i.e., we not only borrow
Timed Automata’s tool support for TCOZ verification but
also lend TCOZ’s hierarchical constructs to facilitate
systematic Timed Automata designs. Furthermore, the
work in [28] mainly focuses on the smooth integration of
the underlying semantic models of CSP, OZ, and DC and its
use for verifying properties of CSP-OZ-DC specifications.
Another related formalism for modeling real-time systems
is TRIO [20]. This notation uses a notion of interface
diagram that is different from the Timed-CSP-featured
TCOZ notation in modeling dynamic behaviors. TRIO has
been compared to TCOZ [36]. Similar to our work, some
other real-time formalisms have been translated or pro-
jected to other formalisms for model-checking [29], [23].
This work is also related to works on compositional
modeling of real-time systems [4], [3], [41], [22] and works
on specification patterns in general [18], [30].

This paper is a revised and extended version of our
conference paper [14], in which the link between Timed
Automata and TCOZ has been investigated. A few timed
patterns have been briefly introduced to show our initial
ideas of reusing Timed Automata’s tool support to verify
TCOZ models. This paper substantially extends [14] with a
range of common timed patterns, as well as a formal
transition from TCOZ to Timed Automata and its correct-
ness proof. We further enhance our previous work with
illustrative examples, as well as a complex case study,
which demonstrate the applicability of our approach. The
remainder of the paper is organized as follows: Section 2
briefly introduces the relevant features of TCOZ and Timed

Automata. Section 3 presents our main contribution, i.e., a

set of composable Timed Automata patterns with formal

semantics. We also demonstrate how new patterns can be

composed from the existing ones. Section 4 shows how

TCOZ or Timed CSP users may benefit from our patterns,

by defining a formal translation from TCOZ to Timed

Automata. A JAVA application for automating the projec-

tion is briefly discussed. Section 5 shows how Timed

Automata users benefit from the patterns. We demonstrate

a hierarchical Timed Automata design using a railcar

system. Section 6 concludes this work. Throughout the

paper, a process means a TCOZ or Timed CSP process and

automata refer to Timed Automata unless otherwise stated.

2 BACKGROUND

2.1 Timed Automata

Timed Automata were proposed in [2] as an extension of

the automata-theoretic approach to the modeling of real-

time systems. Since then, the theory and verification tool

support of Timed Automata has been an intensive field of

research in computer science. A Timed Automaton is a

finite automaton equipped with a finite set of clocks. Clocks

are continuous real-valued functions of time that precisely

record the time elapsed. All clocks advance at the same

pace. Real-time system behaviors are captured using Timed

Automata by explicitly resetting clocks and comparing a

clock reading with constants.

Definition 1 (Timed Automaton). A Timed Automaton A is a

7-tuple ðS; init; F ;�; C; Inv; T Þ, where S is a finite set of

states, init 2 S is an initial state,1 F � S is a set of final

states, � is a set of actions/events, C is a finite set of clocks,

Inv is a proposition assignment function that, for each state,

gives a proposition true at the state, and T : S � �� 2C �
�ðCÞ � S is the transition relation. A transition ðs; a; �; �; s0Þ
represents a transition from state s to state s0 on eventa. The set�

gives the clocks to be reset with this transition and � is a clock

constraint overC that specifies when the switch is enabled. �ðCÞ
is a set of clock constraints that is defined by the following

grammar: ’ :¼ truejx � cjc � xjx < cjc < xj’1 ^ ’2, where

x is a clock and c is a real number.

Note that F might be empty if the Timed Automata never

terminates (i.e., no deadlock state). The semantics of a Timed

Automaton is defined as a transition system. A run of the

timed automaton starts with the initial state. The control may

remain at a state s as long as the state InvðsÞ is not violated. A

transition ðs; a; �; �; s0Þ is enabled if and only if the control is at

state s, the guard condition � is satisfied (by the valuation of

the clocks), and the event a is enabled. The transition is

unguarded if � is true. After taking the transition, the control

moves to state s0 and the clocks in � reset.

Example. The following shows a sample Timed Automaton

specifying a railcar door (the railcar system will be

specified in Section 5).

DONG ET AL.: TIMED AUTOMATA PATTERNS 845

1. If there were multiple initial states, a unique initial state is created with
internal transitions to the ordinary initial states.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

For the sake of readability, the states are labeled with
names, e.g., Open, Close, and ToOpen. We assume that
the door can be closed instantly and, hence, there is no
state named ToClose. Initially, the control is at state
Close, indicated by the double-lined circle. The transition
is fired once an input is received over channel open (as
the transition is unguarded), the control goes to state
ToOpen, and clock x is reset. Within 2 seconds
(constrained by the state invariant), the control goes to
state Open. An output on the channel conf takes place
along with the transition. The door remains open for
10 seconds, i.e., passengers have 10 time units for
boarding, and, then, the control goes to state Close.

A Timed Automata specification may consist of a
network of Timed Automata. A state in the product of
two Timed Automata is a pair of states, each representing
the progress one of the Timed Automata has made so far. A
transition in the product is either a local transition of either
automaton or a synchronization between the two compo-
nents. The synchronization is locking; for an input and
output pair, a component can input/output if and only if
the other component can output/input. The following
formally defines the parallel composition. For simplicity,
we assume that there are no common clock variables. Note
that parallel composition is the only Timed Automata
pattern in the original proposal of Timed Automata [2].

Definition 2 (Parallel Composition). Let Ai ¼
ðSi; initi; Fi;�i; Ci; Invi; TiÞ where i 2 f1; 2g be two Timed
Automata. The parallel composition of A1 and A2 is

paraðA1; A2Þ ¼ ðS1 � S2; ðinit1; init2Þ; F1 � F2;�1 [�2;

C1 [C2; Inv; T Þ;

w h e r e 8ðs1; s2Þ : S1 � S2 � Invððs1; s2ÞÞ ¼ Inv1ðs1Þ ^
Inv2ðs2Þ and T is the smallest transition relation satisfying
the following conditions:2

. If ðs; a; �; �; s0Þ 2 Ti ^ a 62 �3�i where i 2 f1; 2g, then
ððs; tÞ; a; �; �; ðs0; tÞÞ 2 T .

. If ðs1; a; �; �; s2Þ 2 Ti and ðs01; a; �0; �0; s02Þ 2 T3�i,
then ððs1; s

0
1Þ; a; � [�0; � ^ �0; ðs2; s

0
2ÞÞ 2 T .

The indexed parallel composition of multiple automata is
written as paraðA1; A2; . . . ; AnÞ, where A1; . . . ; An are timed
automata.

By definition, parallel composition is communicative and
distributive tracewise. A number of Timed Automata
verifiers based on the model checking technique have been
developed. In this work, we focus on the popular UPPAAL
[33]. UPPAAL is a tool for the modeling, simulation, and
verification of real-time systems. It consists of three main
parts: a system editor, a simulator, and a model checker.
The system editor provides a graphical interface for the tool.

Typically, a system description consists of a set of instances
of Timed Automata declared from process templates and of
some global data, such as global clocks, variables, and
synchronization channels. The simulator is a validation tool
that enables the examination of possible dynamic execu-
tions of a system. The model checker verifies invariants and
bounded liveness properties by exploring the symbolic state
space of a system, i.e., reachability analysis in terms of
symbolic states represented by constraints. The model
checking engine of UPPAAL is designed to check a
restricted subset of Timed CTL [1] formulas for networks
of Timed Automata. Note that Timed Automata in
UPPAAL extend the original one [2] with handy constructs
like urgent states and committed states. No time elapsing is
allowed at an urgent state, i.e., an urgent state is labeled
with an additional invariant that the control cannot reside at
the state. We write ðs; urgentÞ 2 Inv to mean that state s is
urgent. In the following, states in the timed patterns may be
marked as urgent states so as to make it easier to prove the
soundness of the patterns and to simplify the flattened
Timed Automata (see later examples). An urgent state is
drawn as a circle with a “U” inside.

2.2 Time Communicating Object Z

A number of time-enriched process algebras have been
proposed. In this work, we focus on TCOZ [36], which,
compared to others, contains a larger set of compositional
constructs. TCOZ is designed to present a complete and
coherent specification of systems with not only complicated
control flows but also complex data and functional require-
ments. It is essentially a blending of OZ with Timed CSP, for
the most part preserving them as proper sublanguages of the
blended notation. TCOZ is novel in that it includes timing
primitives, properly separates process control and data/
algorithm issues, fully integrates notions of refinement from
both languages, supports the modeling of true multithreaded
concurrency, and distinguishes the notion of active and
passive objects. In the following, we walk through the main
features of TCOZ using an illustrative example. A detailed
introduction to TCOZ and its Timed CSP and OZ features
may be found in [36].

Example. Fig. 1 presents a TCOZ specification of a timed
message queue. It contains a single class named
TimedQueue. The anonymous schema called state schema
identifies the data space of the class. In particular, the
variable item is a sequence of messages. MSG is an
uninterpreted data type. in and out of reserved type
chan identifies the communication interfaces of this
class, i.e., in and out are channels connecting objects of
this class to its environment. Channels that share the
same base name in different classes are connected
implicitly. Tl, Tj, and To are time constants which are
used to constrain the duration of a data operation. The
schema named INIT contains the predicate that identifies
the initial data state, i.e., items is empty. The two
schemas Add and Del are operation schemas. They define
the data operations that may update the valuation of the
data variables. The predicate part of an operation (the part
under the horizontal line) specifies an operation using a
predicate composed of primed and unprimed versions of
the data variables, as well as inputs/outputs. The primed
variables denote the valuation of the variable after the
operation. In particular, the predicate part of operation

846 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

2. In UPPAAL, a pair of input and output results in a silent transition.
Synchronization among multiple parties is mimicked using the notion of
committed states.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

Add means that the sequence of messages after the
operation should be the original sequence of messages
followed with the input. The remaining part is a set of
process definitions which specifies the dynamic behavior
of objects of this class. A process is defined by an
equation. The left-hand side is the process name, e.g.,
Join, Leave, and Main. Note that b¼ means “is defined
as.” The right-hand side is the process expression that
defines the process. For instance, process Join behaves
as follows: after getting an input i from channel in (the
part ½i : MSG� is a guard condition saying that i must be
of type MSG), the operation Add is performed within
Tj time units (constrained by the DEADLINE expression).
The Leave operation specifies that if the sequence items
is not empty ðitems 6¼ ;Þ, the first element in items
ðheadðitemsÞÞ shall be sent over channel out and, then,
operation Del is performed to remove this element from
items in Tl time units. The process named MAIN

identifies the behavior of instances of the class after
initialization. In particular, the Main process is defined
as a recursion (as a � function). The process construct tu
means choice and .fTog means time-out. The process
reads as “the system may either behave as prescribed by
Join or Leave or, if nothing happens in To time units,
then the system performs operation Del in Tl time units
and then repeats from the beginning.” If no input or
output is performed in To time units, then the first
message is lost.

In this work, we focus on the process aspects of TCOZ,
which borrows and extends the modeling power of Timed
CSP. Table 1 shows a list of process constructs in TCOZ.
STOP denotes a process that deadlocks and does nothing.
SKIP denotes a process that terminates successfully. Process
WAIT t delays the system for exactly t time units. Process

e! P is initially willing to engage in event e and behaves
as P afterward. A process e@t! P ðtÞ behaves just like e!
P except that the engage time of e is recorded in t. The
event e can be a channel communication of the form c!a or
c?a. In order to capture timing requirements naturally,
TCOZ supports common timing constraints like deadline
and wait until. Process P �DEADLINE t is constrained to
terminate within t time units. The WAITUNTIL operator is a
dual to DEADLINE. Process P �WAITUNTIL t behaves as P
but will not terminate before t time units elapse. If P
terminates early, it idles until t time units elapse. Processes
may be compositional. The sequential composition P ;Q
behaves as P until it terminates and then behaves as Q. An
external choice is written as P tu Q. Often, external choices
are guarded by prefixing or conditionals. The internal
choice P uQ behaves as either P or Q nondeterministically.
The parallel composition of two processes is written as
P j½E�jQ, where E is a set of events. Events in E are
synchronized by P and Q. If E is the empty set, the two
processes interleave, written as PkjQ. Process P . ftgQ
behaves as P if P makes a move before t time units elapse;
otherwise, Q takes control. P 4 e! Q behaves as P until
event e is engaged and, then, P is interrupted and Q takes
control. Process P 4 ftgQ is called timed interrupt. It
behaves as P until t time units elapse and then switches
to Q. Both interruptions are preemptive. Recursion is
defined as a � function. The semantics of recursion is
defined as Tarski’s weakest fixed point. It is known that
unbounded recursion in CSP (and, therefore, Timed CSP
and TCOZ) may result in irregular languages. Therefore, we
restrict ourselves to tail recursion, i.e., a special case of
recursion in which only the last operation of a process is a
recursive call.

DONG ET AL.: TIMED AUTOMATA PATTERNS 847

Fig. 1. Timed message queue specification.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

3 TIMED AUTOMATA PATTERNS

High-level real-time system requirements are often stated
using terms like deadline, time-out, and wait until, which can be
regarded as common timing constraint patterns. TCOZ,
designed to capture high-level system requirements, has a
rich set of hierarchical constructs that capture those common
timing patterns. In contrast, Timed Automata users often
need to manually cast those timing patterns into a set of clock
variables with carefully calculated clock constraints. In this
section, a rich set of composable Timed Automata patterns
is defined formally in order to facilitate high-level system
design using Timed Automata. Established compositional
patterns introduced in the classic CCS, CSP, Timed CSP,
and TCOZ are presented. The usefulness of the composi-
tions is evidenced by early case studies on using those
formalisms for system specification and analysis [31], [16],
[13], [34]. Because we aim for efficient verification and
compositional modeling, the patterns are designed to be
simple, intuitive, and congruent to timed process algebra
operators.

3.1 Patterns

In the following, the Timed Automata patterns are
introduced one by one. First, the formal definition is
presented, followed by an intuitive graphic presentation.
Graphically, an automaton is abstracted as a triangle. The
left vertex of the triangle or a circle attached to the left
vertex represents the initial states. The right edge represents
the final states. The parallel composition of two automata is

represented as two triangles that are side by side. In the
following, � denotes an internal unobservable transition.
For simplicity, a function/relation is interpreted as a set of
tuples (as in the Z language [43]). We assume that, for any
automaton A ¼ ðS; init; F ;�; C; Inv; T Þ, the domain of Inv
and T is always restricted to S. Note that not all of the
patterns are essential as some of them can be generated by
composing other patterns. We will thus introduce the
fundamental ones and then a set of derived ones.

Definit ion 3 (Event Prefixing) . Let A ¼
ðS; init; F ;�; C; Inv; T Þ be a Timed Automaton. Let a be an
event. The event-prefixing pattern, i.e., the Timed Automaton
in which e precedes any action of A, written as
eventprefixða;AÞ, is

ðS [finit0g; init0; F ;� [fag; C; Inv [fðinit0; trueÞg;
T [fðinit0; a; ;; true; initÞgÞ;

where init0 is a fresh state.

Event prefixing is considered one of the most commonly
used basic patterns, e.g., a task is preceded by some event.
In the above pattern, event a (which may be a synchroniza-
tion barrier or variable assignment) must be engaged before
a certain task (which is modeled as A) must be carried out.
The fresh state init0 is connected to the initial state in A by a
transition labeled with a.

Definition 4 (Internal Choice) . Let Ai ¼
ðSi; initi; Fi;�i; Ci; Invi; TiÞ where i 2 f1; 2g be two Timed
Automata. The internal choice of A1 and A2, written as
intchoiceðA1; A2Þ, is

ðS1 [S2 [finit0g; init0; F1 [F2;�1 [�2; C1 [C2;

Inv1 [Inv2 [fðinit0; urgentÞg; T 0Þ;

w h e r e init0 i s a f r e s h s t a t e a n d T 0 ¼ T1 [T2 [
fðinit0; �; ;; true; init1Þ; ðinit0; �; ;; true; init2Þg.

The above pattern captures nondeterminism, i.e., the
system described nondeterministically behaves as either
A1 or A2. Nondeterminism allows us to abstract away
irrelevant details of the system [27]. By introducing a fresh
state init0 and connecting init0 to initial states of both
automata by unguarded transitions labeled with � , the
choice is made internally and, thus, nondeterministically.
Because internal choice is symmetric and associative, we
write intchoiceðA1; A2; . . . ; AnÞ to denote the nondetermi-
nistic choice among multiple timed automata. Note that
init0 is urgent and, thus, no time elapsing is allowed. The
rule is that only additional states are marked urgent.
Marking states urgent allows us to systematically simplify
composed timed patterns (see example in Section 3.2).

Definition 5 (Recursion). Let A ¼ ðS; init; F ;�; C; Inv; T Þ be
a Timed Automaton. Let S0 be a set of states such that S0 � S.

848 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

TABLE 1
Time-Enriched Process Constructs

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

The recursion pattern, i.e., the Timed Automaton containing

recursive invocation of A at a state in S0, written as

recurðA;S0Þ, is ðS n S0; init; F n S0;�; C; Inv; T
0Þ, where

T 0 ¼ T [fðs; a; �; �; initÞj9s0 : S0 � ðs; a; �; �; s0Þ 2 Tg.

Recursion is used to introduce infinite behaviors, which is
commonly used for specifying nonterminating reactive
systems. Given a timed automaton A and a set of states
S0 where there is a recursive call, the pattern is constructed
by diverting all of the transitions to a state in S0 to the initial
state. Note that we request that S0 must be a proper subset
of S so as to prevent divergence. The dotted arrow
represents a transition that originally leads to a state in
S0. In the resulting automaton, such transitions are
redirected to the initial state of A. This construction only
handles tail recursion. Note that we write recurðAÞ to
denote recurðA;A:F Þ, i.e., the second argument is defaulted
to be the final states of A.

Definition 6 (Delay). Let t be a positive real number. The Timed

Automaton that delays the execution by t time units, written

as delayðtÞ, is ðfs1; s2; s3g; s1; fs3g; ;; fxg; Inv; T Þ, where

Inv ¼ fðs1; urgentÞ; ðs2; x � tÞ; ðs3; urgentÞg a n d T ¼
fðs1; �; fxg; true; s2Þ; ðs2; � ; ;; x ¼ t; s3Þg.

The above pattern is used to delay the execution (of the
system) by exactly t time units, e.g., one of the common
requirements for timed systems. We remark that internal
choice u, event prefixing a! P , recursion, and WAIT may
be regarded as the fundamental blocking of Timed CSP
processes. This is justified by combining previous results on
deriving a normal form for CSP/Timed CSP processes. In
[9], it is proven that all CSP processes can be transformed
into a normal form, which composes only internal choices,
event prefixing, and process referencing.3 In [12], it is
proven that the only fundamental building block of Timed
CSP processes (besides those of CSP) is WAIT. We may thus
prove that patterns that correspond to Timed CSP operators
can be generated from the fundamental ones (by transform-
ing them into the normal form) by combining the above
results and proving a congruence theorem. In addition to
patterns corresponding to Timed CSP constructs, two
additional patterns are introduced, namely, waituntil and
deadline. The wait-until pattern can be generated by
composing other patterns (as we shall show later), whereas
the deadline pattern cannot. Thus, we regard the following
deadline pattern as fundamental too. Nonetheless, we give
the definitions of patterns corresponding to all TCOZ
operators for user convenience as well as efficiency reasons,
i.e., a commonly used pattern may be manually optimized.

Definition 7 (deadline). Let A ¼ ðS; init; F ;�; C; Inv; T Þ be a

Timed Automaton. Let t be a positive real number. The

deadline pattern deadlineðA; tÞ is

ðS [finit0g; init0; F ;�; C [fxg; fðinit0; urgentÞg
[fðs; invÞjs 2 S ^ inv ¼ ðInvðsÞ ^ x � tÞg;
T [fðinit0; � ; fxg; true; initÞgÞ;

where init0 is a fresh state and x is a fresh clock.

The above pattern is used to capture the requirement that
some task must be finished by a certain time. It is more of a
requirement than a design. Given a Timed Automaton A, if
it is constrained to finish within t time units, all states in A
are labeled with an invariant x � t in which x is a fresh
clock, which is reset when the control enters the automaton.
The leftmost state is the fresh state init0. The local invariant
x � t covers each state of the timed automaton and, thus, A
must terminate no later than t time units. This pattern may
introduce timelocks [6]. In particular, there might be
time-actionlocks (i.e., situations in which neither time nor
action transitions can be performed) or zeno-timelocks (i.e.,
situations in which time is unable to pass beyond a certain
point, but actions continue to be performed). Detecting and
resolving timelocks is a highly nontrivial task (refer to [6]
for sufficient conditions and sufficient and necessary
conditions for timelock-freeness). Nonetheless, we choose
to introduce this pattern simply because deadline is a
common real-time requirement. We may verify (e.g., using
the tool presented in [7] or UPPAAL) that A terminates
within t time units in all circumstances (so as to prevent
timelocks). Alternative ways of capturing deadlines are
presented in [3], [26].

Definition 8 (wait until). Let A ¼ ðS; init; F ;�; C; Inv; T Þ be
a Timed Automaton. Let t be a positive real number. The wait-
until pattern, written as waituntilðA; tÞ, is

ðS [finit0; f 0; f 00g; init0; ff 0g;�; C [fxg;
Inv [fðinit0; urgentÞ; ðf 0; trueÞ; ðf 00; x � tÞg; T 0Þ;

where init0, f 0, and f 00 are fresh states, x is a fresh clock, and

T 0 ¼ T [fðinit0; �; fxg; true; initÞg
[fðf; �; ;; x 	 t; f 0Þjf 2 Fg [fðf; �; ;; x < t; f 00Þjf 2 Fg
[fðf 00; � ; ;; x ¼ t; f 0Þg:

The above pattern is used to constrain that a certain task
must take certain time units to finish. The automaton is
constrained to finish its process no earlier than t time units.
Given the automaton A, if the process of A finishes earlier
than t time units, then the system idles at a fresh state f 00

until exactly t time units elapses. Else if the process of A
takes more than (or exactly) t time units, the system
proceeds to final state f 0 without further waiting. Note that
this pattern can be generated from the delay pattern and the
parallel composition pattern, i.e., it is straightforward to
prove that waituntilðA; tÞ is equivalent to paraðA; delayðtÞÞ.

DONG ET AL.: TIMED AUTOMATA PATTERNS 849

3. Or a chaotic process ? , which is irrelevant.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

Definition 9 (External Choice). Let Ai ¼
ðSi; initi; Fi;�i; Ci; Invi; TiÞ where i 2 f1; 2g be two Timed

Automata. An external choice of A1 and A2, written as

extchoiceðA1; A2Þ, is paraðA01; A02Þ, where

A01 ¼ ðS1; init1; F1;�1; C1; Inv1; fðs; �; �; � ^ x � 0; s0Þj
ðs; �; �; �; s0Þ 2 T1g [fðs; x :¼ �1; �; � ^ x � 0; s0Þj
ðs; a; �; �; s0Þ 2 T1gÞ

and

A02 ¼ ðS2; init2; F2;�2; C2; Inv2; fðs; �; �; � ^ x 	 0; s0Þj
ðs; �; �; �; s0Þ 2 T2g [fðs; x :¼ 1; �; � ^ x 	 0; s0Þj
ðs; a; �; �; s0Þ 2 T2gÞ;

where x : f�1; 0; 1g is a fresh control variable.

The above pattern is useful when the choice is resolved by

the first action of either A1 or A2. In the composition, the

system may initially take a transition enabled in either A1 or

A2. An initial state in the composition is a pair of initial

states ðinit1; init2Þ, which is labeled transitions from either

init1 or init2. Given automata A1; . . . ; An, the indexed

external choice is written as extchoiceðA1; . . . ; AnÞ as

extchoice is symmetric and associative. As external choice

is an operator of CSP, by applying the result in [9], it can be

resolved to a normal form containing only the fundamental

building blocks.

Definition 10 (Sequential Composition). Let Ai ¼
ðSi; initi; Fi;�i; Ci; Invi; TiÞ where i 2 f1; 2g be two Timed

Automata. The sequential composition of A1 and A2, written

as seqðA1; A2Þ, is

ðS1 [S2; init1; F2;�1 [�2; C1 [C2; Inv1 [Inv2

[fðs; urgentÞjs 2 F1g; T Þ;

where T ¼ T1 [T2 [fðf; �; ;; true; init2Þjf 2 F1g.

Given two Timed Automata A1 and A2, the above shows the

sequential composition. Sequential composition is com-

monly used to accomplish two tasks/jobs in order. By

linking the final states of A1 (i.e., the right edge) with the

initial state of A2 (i.e., the left vertex), the resulting

automaton passes control from A1 to A2 immediately after

A1 terminates. The transition from a final state in A1 to an

initial state in A2 is unguarded and labeled with � . If A1 is

nonterminating, the final states in A2 may not be reachable.

D e f i n i t i o n 1 1 (T i m e O u t) . L e t Ai ¼
ðSi; initi; Fi;�i; Ci; Invi; TiÞ where i 2 f1; 2g be two Timed

Automata. Let t be a positive real number. The time-out

pattern, written as timeoutðA1; A2; tÞ, is

ðS1 [S2 [finit0g; init0; F1 [F2;�1 [�2; C1 [C2 [fxg;
Inv0; T 0Þ;

where init0 is a fresh state, x is a fresh clock,

Inv0 ¼ fðinit0; urgentÞg [fðinit1; Inv1ðinit1Þ ^ x � tÞg
[fðs; Inv1ðsÞÞjs 2 S1 n finit1gg [fðs; Inv2ðsÞÞjs 2 S2g

and

T 0 ¼ T1 [T2 [fðinit0; � ; fxg; true; initÞg
[fðinit1�; ;; x ¼ t; init2Þg:

Time out is a common behavior pattern in real-time
systems, which is partially evidenced by different ways
proposed to model it [21], [5], [40]. The fresh clock x is reset
along the transition from the fresh initial state to an initial in
A1. Each initial state in A1 is constrained to make a move no
later than t time units. If the control moves out the initial
state before t time units, the system behaves as prescribed
by A1. Otherwise, after exactly t time units, A2 takes over
the control. If A1 may make a move at exactly time t, the
system nondeterministically takes one of the transitions and
prevents the other from happening. The timed-out pattern
can be generated using the external choice pattern and the
delay pattern.

Definition 12 (Timed Interrupt). Let Ai ¼
ðSi; initi; Fi;�i; Ci; Invi; TiÞ where i 2 f1; 2g be two Timed
Automata. Let t be a positive real number. The timed-interrupt
pattern, i.e., the Timed Automaton in which A1 is interrupted
by A2 after A1 starts execution for t time units, written as
timeinterðA1; A2; tÞ, i s ðS1 [S2 [finit0g; init0; F2;�1 [
�2; C1 [C2 [fxg; Inv0; T 0Þ, where init0 is a fresh state, x
is a fresh clock,

Inv0 ¼ fðinit0; urgentÞg [fðs; Inv1ðsÞ ^ x � tÞjs 2 S1g
[Inv2;

and

T 0 ¼ T1 [T2 [fðinit0; �; fxg; true; init1Þg
[fðs1; � ; ;; x ¼ t; init2Þjs1 2 S1g:

The pattern is composed of two automata, A1 and A2. The
fresh state init0 and clock x are used similarly as in the
previous patterns. Every state in A1 is constrained to make a
move before t time units. After t time units elapse, the
control transfers from one of the state in A1 (not necessarily
a final state) to the initial state in A2. Note that the
interruption is preemptive, i.e., transitions in A1 are
prevented from happening once t time units have elapsed.

850 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

Definition 13 (event interrupt). Let Ai ¼
ðSi; initi; Fi;�i; Ci; Invi; TiÞ where i 2 f1; 2g be two Timed

Automata. Let a be an event. The event-interrupt pattern, i.e.,

the Timed Automaton in which A1 is interrupted whenever

event a engages and then the control transfers to A2, written

as evtinterðA1; A2; aÞ, is

ðS1 [S2; init1; F1 [F2;�1 [�2 [fag; C1 [C2;

Inv1 [Inv2; T
0Þ;

where T 0 ¼ T1 [T2 [fðs1; a; fxg; true; init2Þjs1 2 S1g.

Event interrupt is similar to timed interrupt except that,

because there are no timing constraints involved, no

additional state or clock is necessary. Instead, an unguarded

transition labeled with a is created from each state in A1 to

an initial state in A2.

Definition 14 (Timed-Event Prefixing). Let A ¼
ðS; init; F ;�; C; Inv; T Þ be a Timed Automaton. Let a be an

event. Let t be a positive real number. The timed-event-

prefixing pattern, i.e., the Timed Automaton in which a

engages at time t and precedes any action of A, written as

teventprefixða; t; AÞ, is

ðS [finit0; init00g; init0; F ;� [fag; C [fxg;
Inv [fðinit0; urgentÞ; ðinit00; trueÞg; T 0Þ;

w h e r e init0; init00 a r e f r e s h s t a t e s a n d T 0 ¼ T [
fðinit0; � ; fxg; true; init00Þ; ðinit00; a; t :¼ x; ;; true; initÞgÞ.

Because t is the time taken from the moment this pattern is

enabled to the time event a is engaged, a fresh clock x is

initiated whenever the automaton is enabled. The reading

of x at the time when a is engaged is recorded in t.

3.2 Composing Patterns

Our experience [16], [13], [37] shows that the patterns

presented above cover most of the common timed patterns.

Nonetheless, the patterns are by no means complete. New

useful patterns can be added into our library or composed

from the existing ones. In the following, we show how to build

new patterns by composing multiple existing patterns.

Example. Assume that the requirement is that “a task must

be repeated every t time units (the hidden requirement is

that the task must terminate before t time units).” A new

pattern, named periodic-repeat can be generated by

composing the deadline, wait-until, and recursion patterns.

Let A ¼ ðS; init; F ;�; C; Inv; T Þ be the automaton mod-

eling the task. By Definition 7, deadlineðA; tÞ is

ðS [fi1g; i1; F ;�; C [fxg; fði1; urgentÞg
[fðs; InvðsÞ ^ x � tÞjs 2 Sg; T [fði1; � ; fxg; true; initÞgÞ:

By Definition 8,

waituntilðdeadlineðA; tÞÞ ¼ ðS1; init1; F1; C1; Inv1; T1Þ;

where

S1 ¼ S [fi1; i2; f1; f2g; init1 ¼ i2;F1 ¼ ff1g;
�1 ¼ �;C1 ¼ C [fx; yg;

Inv1 ¼ ðs; InvðsÞ ^ x � tÞjs 2 Sf g [ði1; urgentÞ; ði2; urgentÞ;f
ðf1; trueÞ; ðf2; x � tÞg;

T1 ¼ T [ði1; � ; fxg; true; initÞf g [ði2; �; fyg; true; i1Þf g
[ðf; �; ;; y 	 t; f1Þjf 2 Ff g [ðf; �; ;; y < t; f2Þjf 2 Ff g
[ðf2; � ; ;; y ¼ t; f1Þf g:

The periodic-repeat pattern is

periodicrepeatðA; tÞ ¼ recurðwaituntilðdeadlineðA; tÞÞÞ;

which is denoted as ðS1; init2; F2;�2; C2; Inv2; T2Þ. By

Definition 5, we have

S2 ¼ S [fi1; i2; f2g; init2 ¼ i2;F2 ¼ ;; �2 ¼ �;

C2 ¼ C [fx; yg;
Inv2 ¼ ðs; InvðsÞ ^ x � tÞjs 2 Sf g [ði1; urgentÞ;f

ði2; urgentÞ; ðf2; x � tÞg;
T2 ¼ T [ði1; � ; fxg; true; initf g [ði2; � ; fyg; true; i1Þf g

[ðf; �; ;; y 	 t; i2Þjf 2 Ff g [ðf; �; ;; y < t; f2Þjf 2 Ff g
[ðf2; � ; ;; y ¼ t; i2Þf g:

Note that, because the only final state f1 is replaced by a

recursive call at the last step, the automaton is

nonterminating (as expected) and, hence, has no final

states. The transformation is visualized in Fig. 2. The

resulting automaton is the one on the left. Because

state i1 (the second state from left) is urgent, at any

moment x ¼ y, the automaton is simplified to be the right

one (� transitions have been removed). The two diverted

transitions are merged into one because they are only

enabled when the reading of clock x or y is t.

DONG ET AL.: TIMED AUTOMATA PATTERNS 851

Fig. 2. Composing timed patterns.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

It is important that the Timed Automata patterns

combine with the bottom-up composibility (of process

algebra style) because complex real-time systems may be

naturally modeled as collections of subcomponents at

different abstraction levels. In the bottom-up design

process, a subcomponent of reasonable complexity (and

which is flattened) may be modeled as a Timed Automaton.

The system can then be naturally composed from the

modeling of the subcomponents. The Timed Automata

patterns provide user-friendly templates to build such

hierarchical modeling. In the top-down design process,

the modeling of a complex system can be generated by

refining the components, step by step, using appropriate

patterns until it is simple enough to be modeled as a

flattened Timed Automaton. As a reasonable price to pay, a

system design based on Timed Automata patterns may

require extra states or clocks, for instance, Definitions 7, 8,

and 14 introduce new states and clocks. However, our

experience shows that the extra states and clocks often can

be removed using simple optimization procedures, e.g.,

�-transition reduction (if the outgoing transitions of a state

are all �-transitions, remove the state and redirect all

incoming transitions), urgent states reduction, or reusing

clocks that are no longer referenced (which is common as

clocks are local to one Timed Automaton).

4 TRANSLATING TIMED PROCESS ALGEBRA TO

TIMED AUTOMATA

A practical implication of the Timed Automata patterns is

that process-algebra-based specification languages like

Timed CSP or TCOZ can be systematically translated to

Timed Automata so as to benefit from the verification

mechanism of Timed Automata. In this section, a transla-

tion from TCOZ to Timed Automata is defined (which

implies a translation from Timed CSP to Timed Automata).

The following defines the Timed Automaton interpretation

of the primitive processes.

Definition 15 (primitives). Let Op be a data operation (or an
operation schema):

Askip ¼ fi; fg; i; ffg; f�g; ;; ði; urgentÞ; ðf; trueÞf g;ð
ði; �; ;; true; fÞf gÞ;

Astop ¼ fig; i; ;; ;; ;; ði; trueÞf g; ;ð Þ;
AOp ¼ fi; fg; i; ffg; feOpg; ;; ði; trueÞ; ðf; trueÞf g;

�
ði; eOp; ;; pre Op; fÞ
� ��

;

where eOp is an atomic event representing the data operation
and pre Op is its precondition [43].

Askip allows an unguarded transition from its initial state to

the final state. Because the initial state is urgent, the

automaton terminates immediately. Astop allows no transi-

tions at all (and so, no final state is reachable). A data

operation is presented as a Timed Automaton with only one

transition. The transition is guarded with the precondition

of the operation and labeled with an event that represents

the atomic data change. The control may reside at the initial

state for some time as the data operation may not be

instantaneous.

Definition 16 (translation). Let P be the set of all TCOZ

processes. Let A be the set of all Timed Automata. A

translation is a function M : P ! A defined as follows:

MðSKIPÞ ¼ Askip

MðSTOPÞ ¼ Astop;
MðOpÞ ¼ AOp;
Mða! P Þ ¼ eventprefix a;MðP Þð Þ;
Mða@t! P Þ ¼ teventprefix a; t;MðP Þð Þ;
MðWAIT tÞ ¼ delayðtÞ;
MðP �WAITUNTIL tÞ ¼ waituntil MðP Þ; tð Þ;
MðP �DEADLINE tÞ ¼ deadline MðP Þ; tð Þ;
M P . ftgQð Þ ¼ timeout MðP Þ;MðQÞ; tð Þ;
M P 4 ftgQð Þ ¼ timeinter MðP Þ;MðQÞ; tð Þ;
MðP 4 a! QÞ ¼ evtinter MðP Þ;MðQÞ; að Þ;
MðP ;QÞ ¼ seq MðP Þ;MðQÞð Þ;
MðPtuQÞ ¼ extchoice MðP Þ;MðQÞð Þ;
MðP uQÞ ¼ intchoice MðP Þ;MðQÞð Þ;
MðPkQÞ ¼ para MðP Þ;MðQÞð Þ;
M �X � P ðXÞð Þ ¼ recur M P ðXÞð Þ; SXð Þ;

where P and Q are processes, a is an event, t is a positive real

number, and SX is a set of states where X is invoked.

Note that recursion in the above definition relies on SX. A

recursive process is translated like a normal process except

that, whenever there is a recursive callX, instead of unfolding

X as a Timed Automaton, a state is created and the state is

added to SX. The rest of the translation is mostly self-

explanatory. For instance, P �DEADLINE t constrains that P

must terminate no later than t. This process is translated to

deadlineðMðP Þ; tÞ in which MðP Þ is the Timed Automaton

capturing the behaviors of process P . The resulting auto-

maton differs from MðP Þ in that it must terminate before

t time units, which is the semantics of the TCOZ expression

P �DEADLINE t. Other mapping rules can be explained

similarly. By applying M iteratively, a process is translated

to a flattened Timed Automaton straightforwardly.

Example. We use the timed queue example to illustrate the

translation and hint how the timed patterns can be

applied to facilitate system design using Timed Auto-

mata. If TCOZ is used to specify the queue in the first

place, by applying M to the MAIN process, a Timed

Automaton specification of the queue can be generated

step by step. Because the generated Timed Automata are

behaviorally equivalent to the TCOZ processes (shown

below), the analysis results on the generated Timed

Automata apply to the original TCOZ specification:

852 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

MðMAINÞ¼M �Q � ðJoin tu LeaveÞ . fTogð
ðDel �DEADLINE TlÞ;QÞ
¼ recur MðJoin tu LeaveÞ . fTogð
ðDel �DEADLINE TlÞ;QÞ; SQ

�
¼ recur seq MðJoin tu LeaveÞ . fTogðð
ðDel �DEADLINE TlÞÞ;MðQÞ; SQ

�
¼ recur seq timeout MðJoin tu LeaveÞ;ððð
MðDel �DEADLINE TlÞ; ToÞ;MðQÞÞ; SQ

�
¼ recur seq timeout extchoiceðMðJoinÞ;ððð
MðLeaveÞÞ; deadlineðMðDelÞ; TlÞ; ToÞ;MðQÞÞ; SQ

�
¼ recur seq timeout extchoiceðAJoin; ALeaveÞ;ððð
deadlineðADel; TlÞ; ToÞ;MðQÞÞ; SQ

�
:

As discussed above, a recursive call shall not be
unfolded. For instance, MðQÞ in the above is viewed a
Timed Automaton with only one state (which is both the
initial and final state), which later will be removed
because of the recursion pattern. By applying the
definitions in Section 3.1 in a bottom-up manner,
MðMAINÞ is flattened to the one in Fig. 3b. Note that
state Q corresponds to the recursive call of process Q.
The Timed Automaton can be further reduced to Fig. 3a
by removing �-transitions (e.g., the transitions from f2,
f1, and f3 to f6) and the urgent state f5 and reusing
clocks (e.g., instead of x, reuse y).

Alternatively, Timed Automata users can do a top-
down design using the patterns in the same modular
way that TCOZ users do hierarchical system design, that
is, to assume the availability of lower level processes or
Timed Automata that behave in a certain way, specify
the system in terms of the lower level processes or Timed
Automata (e.g., at the top level, a designer may
intuitively decide that the queue must be recursive and
therefore apply the recursion pattern), and then itera-
tively refine each lower level process or Timed Auto-
maton until they are simple enough to be modeled as a
simple process or a flattened Timed Automaton.

In the following, we prove that the translation M is
sound, i.e., given any process P , the automaton MðP Þ is
behaviorally equivalent to P . We show that there is a weak
bisimulation relation (which implies behavioral equiva-
lence) between the transition system semantics of a process
and the automaton. This also justifies that the patterns
capture intuitive meanings.

Definition 17 (TCOZ Semantics). Let P be the set of all TCOZ

processes. Let P be a process. Let TT be the time domain.
TS1

P ¼ ðP � TT; ðP; tÞ;� [TT;�!1Þ is a labeled transition

system where P � TT is the state space, ðP; tÞ : P � TT is an

initial state, � is a set of events, and �!1 is a labeled

transition relation that is defined by the rules in Appendix A,

which can be found on the Computer Society Digital Library at

http://doi.ieeecomputersociety.org/10.1109/TSE.2008.52,

where c �!1
a

c0
 ðc; a; c0Þ 2 �!1.

Most of the rules (i.e., the operational semantics) can be
referenced in Schneider’s book [40], except those rules that
are TCOZ-specific, e.g., DEADLINE and WAITUNTIL. In the
next definition, �-transitions in TS1

P are abstracted away
because only observable behaviors are concerned.4

Definition 18 (Observable TCOZ Semantics). Let P be the

set of all TCOZ processes. Let P be a process. Let TT be the time

domain. TS2
P ¼ ðP � TT; ðP; tÞ;� [TT;¼)1Þ is a labeled

transition system where P � TT is the state space, ðP; tÞ :

P � TT is an initial state, � is the set of possible events

including the internal event � , and ¼)1 is a labeled transition

relation such that for any c; c0 : P � TT,

. c ¼)1
a

c0 b¼ 9c1; c2 � c �!�1
�

c1 �!1
a

c2 �!�1
�

c0, and

. c ¼)1
�

c0 b¼ 9c1; c2 � c �!�1
�

c1 �!1
�

c2 �!�1
�

c0,

where the relation �!�1
�

is the sequential composition of a

finite number of �!1
�

.

TS2
P differs from TS1

P in that all �-transitions are hidden.
Next, we define the semantics of Timed Automata. A
transition system semantics of Timed Automata has been
defined in [2], [10].

Definition 19 (Timed Automata semantics). Let A ¼
ðS; init; F ;�; C; Inv; T Þ be a Timed Automaton. Let V be

the valuations of clocks. TS1
A ¼ ðS � V ; ðinit; v0Þ;� [

TT;�!2Þ: b¼S � V is the state space. The initial state s0 ¼
ðinit; v0Þ comprises the initial state init and a zero valuation

v0. �!2 � S � ð� [TTÞ � S is a transition relation compris-

ing either time passing ðs; vÞ �!2
� ðs; vþ �Þ or, if the

transition ðs; a; �; �; s0Þ is enabled, an action execution

ðs; vÞ �!2
� ðs0; v0Þ.

Similarly, we define the transition system where all

�-transitions are hidden.

Definition 20 (Observable Timed Automata Semantics).

Let A ¼ ðS; init; F ;�; C; Inv; T Þ be a Timed Automaton.

Let V be the valuation of the clocks. TS2
A ¼ ðS �

V ; ðinit; v0Þ;� [TT;¼)2Þ: S � V is the state space. The

initial state s0 ¼ ðinit; v0Þ comprises the initial state init and

DONG ET AL.: TIMED AUTOMATA PATTERNS 853

4. We assume that the processes are divergence free, i.e., only finite
numbers of consecutive � transitions are possible.

Fig. 3. Timed Automaton of a timed queue where e1, e2, and e3 are eJoin, eLeave, and eDel, respectively.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

a zero valuation v0. ¼)2 � S � ð� [TTÞ � S is a labeled
transition relation such that, for all s; s0 : S � V ,

. s ¼)2
a

s0 b¼ 9s1; s2 � s �!�2
�

s1 ¼)2
a

s2 �!�2
�

s0, and

. s ¼)2
�

s0 b¼ 9s1; s2 � s �!�2
�

s1 ¼)2
�

s2 �!�2
�

s0,

where the transition relation �!�2
�

is the sequential composi-
tion of at most a finite number of �!2

�
.

With the above preparation, a bisimilar (homomorphic)
relation between TS2

P and TS2
A is readily defined.

Definition 21 (Bisimulation). Let TSi ¼ ðSi; initi;�i; TiÞ
where i 2 f1; 2g be two labeled transition systems. For any
s1 2 S1 and s2 2 S2, s1 � s2 if and only if

. 8ðs1; a; s
0
1Þ : T1 � 9s02 2 S2 � ðs2; a; s

0
2Þ 2 T2 ^ s01 � s02

and
. 8ðs2; a; s

0
2Þ : T2 � 9s01 : S1 � ðs1; a; s

0
1Þ 2 T1 ^ s01 � s02.

TS1 and TS2 are bisimilar, written as TS1 � TS2, if and only
if init1 � init2.

The following theorem states that the translation in
Definition 16 is sound, i.e., the source and target transition
systems are bisimilar. The proof is presented in
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2008.52.

Theorem 1 (soundness). Let P be a TCOZ process. Let TS2
P ¼

ðP � TT; ðP; tÞ;� [TT;¼)1Þ as defined above. Let A ¼
MðP Þ ¼ ðS; init; F ;�; C; Inv; T Þ: L e t TS2

A ¼ ðS �
V ; ðinit; v0Þ;� [TT;¼)2Þ as defined above. TS2

P � TS2
A.

4.1 Implementation

In order to assist system development using either TCOZ or
Timed Automata, we have developed a prototype support-
ing functionalities including automated translation from
TCOZ specification to Timed Automata (for TCOZ users to
benefit from the supporting tools of Timed Automata) and
high-level system design using Timed Automata (refer to
the next section).

The translation from TCOZ to Timed Automata is
automated by employing XML and Java technology. In
our previous work, the syntax of the Z family languages
(i.e., Z/OZ/TCOZ) has been defined using XML schemas,
which is named ZML [42]. A number of tools based on XML
representation of TCOZ models have been developed.
UPPAAL also supports an XML representation of Timed
Automata. Hence, the translation is reduced to a conversion
from one XML file to another. Our tool reads a TCOZ
specification represented in XML and outputs an XML
representation of a Timed Automaton specification con-
forming to the DTD syntax defined in UPPAAL. The
translation rules are used as a design document to trans-
form the process aspects of a TCOZ specification. Worthy of
mention is that, because TCOZ allows synchronization
among multiple parties, whereas UPPAAL allows only
pairwise synchronization, committed states are used to
achieve broadcasting communication in the target UPPAAL
model (detailed information can be found in [33]). In
addition, the following handles the data aspects. A channel
communication may carry a value in TCOZ, which is not

possible in UPPAAL. Value passing in UPPAAL is achieved
by global variable assignments along the Timed Automata
transitions. A class in TCOZ is translated to a Timed
Automaton template in UPPAAL (by translating the MAIN

process of the class). Instances of the class are translated as
instances of the template. The predicate in the INIT schema
of a TCOZ class is labeled with the initial state of the
resultant Timed Automaton. UPPAAL supports limited
data types, e.g., bounded integers, arrays of bounded
integers, record types, scalars, etc. Thus, only those data
types are allowed for the translation at the current stage.

5 CASE STUDY: RAILCAR SYSTEM

The system design based on TCOZ is to identify objects and
their data attributes from the system requirements, en-
capsulate relevant data operations, as well as dynamic
behavior patterns, in the respective object modeling, and,
finally, compose different objects to form the system
specification. Because of the bottom-up composibility of
process algebra (which TCOZ is based on), modeling the
dynamic behaviors in TCOZ is compositional and natural.
The system design based on Timed Automata patterns
enjoys similar composibility, i.e., starting with building
Timed Automata designs of fractions of the system and
then composing the basic Timed Automata using the timed
patterns. In this section, a Railcar System is used to
demonstrate a high-level real-time system design using
both Timed Automata patterns and TCOZ. This system was
inspired by the railcar system presented in [24].

5.1 High-Level System Design Using Timed
Automata

In the Railcar System, there are four (possibly more)
terminals that are located in a cyclic path. Each terminal
contains a push button for passengers to place their
requests for car service. A railcar travels clockwise on the
track to transport passengers between terminals. The railcar
is equipped with a destination board to receive internal
requests and to indicate each destination terminal. There is
a central control that receives, processes, and sends data to
the terminals and the railcar so that external requests from
any terminal can be fulfilled. Additional timing require-
ments are added into the original model [24] because
quantitative timing is an important aspect of the system, as
illustrated in the following scenarios:

. Before the railcar leaves a terminal, it sends a signal
to depart to the terminal. The terminal prepares for
the railcar to depart and responds to the railcar
within 5 seconds. The railcar then leaves the
terminal and cruises toward the destination.

. When the railcar comes to a stop at a terminal, it
opens its door for exactly 10 seconds. After that, it
closes the door and begins to wait for either internal
passenger requests or an external request dispatched
from the controller. Passengers inside the railcar are
given 5 seconds to make an internal request before
the railcar accepts any external requests.

Designing the system from scratch using ordinary Timed
Automata is nontrivial. The system is composed of multiple
objects, each of which are assigned with different behavior
patterns, e.g., the controller is responsible for handling

854 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

different tasks. Nonetheless, the requirements of the system
are naturally captured in a hierarchical way [24]. Using the
timed patterns, we achieve a similar approach to model the
system as in [24]. The Railcar System has three components,
i.e., a railcar, the terminals, and a central controller. The
railcar is composed of three basic components, i.e., a car
destination panel, a car door, and a car handler. There is a
button at each terminal so that passengers can request for a
service. The central controller maintains a record of all
external requests and dispatches external requests to the

railcar if there is any. All system components are connected
by channels. Fig. 4 shows a hierarchical blueprint of the
system, where a triangle represents a Timed Automaton
and a double-arrowed dotted line means that there are
communications in between. Each triangle will be detailed
in the following. For each component, we will first identify
the basic behaviors (of manageable complexity) and then
compose them to build the system step by step.

Let terminalðiÞ, where i 2 f1; 2; 3; 4g, be the four term-
inals. Let tb i : IB be a local variable to terminalðiÞ
representing the button at the ith terminal. tb i ¼ true if
and only if the button is lit. The four automata in Fig. 5a
show the basic behaviors of a terminal. In automaton
PressButtonðiÞ, where i 2 f1; 2; 3; 4g, an external request
enters the external request queue in the central controller
only if the button has not been pressed before. Once
pressed, the light is on (i.e., tb i :¼ true). In ButtonOff , once
the controller informs the terminal that the request has been
serviced, the light goes off. In TerApproach, event
approach req signals the approaching of the car, and the

DONG ET AL.: TIMED AUTOMATA PATTERNS 855

Fig. 4. A structural design.

Fig. 5. Basic behavior patterns.

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

terminal does the necessary preparation (abstracted as a
delay in this modeling) and then acknowledges. Last, in
TerDepart, before the car departs, the terminal is informed
by depart req and acknowledges by depart ack. The
composed behavior of a terminal is

terminalðiÞ ¼ recur extchoiceðPressButton; ButtonOff;ð
TerApproach; TerDepartÞÞ;

where PressButton = extchoice(PressButton(1), PressBut-
ton(2), PressButton(3), PressButton(4)). The terminals are
specified as Terminals = para(terminal(1), terminal(2),
terminal(3), terminal(4)).

We model the behaviors of the car similarly. The door
has been modeled in Section 2.1. The panel in the car is
composed of four buttons. Let b be an array of Boolean
variables. b½i� ¼ true, where i 2 f1; 2; 3; 4g, means the
ith button has been lit already. Let curr and dest be two
global variables that record the station the car is approach-
ing and the destination, respectively. Let tostop : IB be a
global variable that says whether to stop or not at the next
terminal. The automata in Fig. 5b model the basic behaviors
of the panel. In automaton IntRequest, a passenger in the
car may press a button on the panel (modeled as event
int request i, where i 2 f1; 2; 3; 4g) and the button is lit
afterward. Note that the button may be pressed even if it
has been pressed already. In IntSchedule, if there is an
internal request, the car panel computes the next destina-
tion once an input is received on channel int sched (from
the car handler). The destination is set to be the next
requested terminal. In IntCheck (when the car is approach-
ing the next terminal), the car handler orders the panel to
check whether there is an internal request for the next
terminal and decides whether to stop at the next terminal.
The overall behaviors of the panel are specified as Panel ¼
recurðextchoiceðIntRequest; IntSchedule; IntCheckÞÞ.

The behavior patterns of the central controller are similar
to those of the panel except that the car panel handles internal
requests, whereas the controller handles external requests.
The automata in Fig. 5c model its basic behaviors. Let eb be an
array of Boolean variables that represents whether the
external buttons have been pressed and lit. The overall
behaviors of the controller are specified as Controller =
recur(extchoice(ExtRequest, ExtSchedule, ExtCheck)).

The automata in Fig. 5d model the basic computational
logic of the car handler. In order to specify its overall
behaviors, we make use of the timed patterns. The
compositional Timed Automaton named Moving, presented
in Fig. 6, specifies the behaviors of the car handler after
getting a request (either from internal or external). If the
destination is the current terminal, the car door is opened.
Otherwise, the car leaves the terminal and heads toward the
destination. Once approaching the next terminal, the car
checks if there is a newly arrived request from external or
internal for the approaching terminal. Afterward, the
automaton repeats from the beginning. Note that this
hierarchical automaton has already been partially flattened
for simplicity.

The overall behavior of the car handler can be composed
from the above basic one. Initially, the car handler is idling
at some terminal. It waits for an internal request first. If an
internal request arrives within 4 seconds, it starts to serve
the request. Otherwise, it waits for either an internal or
external request and then starts moving. Once it reaches the
destination, it repeats from the beginning. The overall
behavior of the car handler is represented as follows:

CarHandler ¼ recur seq timeout IntSchedule; extchoiceððð
ðIntSchedule; ExtScheduleÞ; 4Þ;MovingÞÞ:

Graphically, it is drawn as shown in Fig. 7. Last, the system
is the parallel composition of the three components, i.e.,
para(Terminals, Controller, para(Panel,Door,CarHandler)).

5.2 Analysis of the TCOZ Modeling

Based on the strength of OZ and Timed CSP, TCOZ
supports object-oriented design of data structures, as well
as compositional design of dynamic behaviors, as demon-
strated in [37], [36]. Because modeling using TCOZ (which
shares the same bottom-up nature as using the Timed
Automata patterns) is largely irrelevant to this paper, we
show instead how the TCOZ specification is translated to
Timed Automata systematically using our prototype and
then verified using UPPAAL. The relevant part of the TCOZ
specification is presented in Appendix C, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2008.52.

856 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

Fig. 6. Composed behaviors (1).

Fig. 7. Composed behaviors (2).

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

Each active class in the TCOZ model is projected to a
Timed Automaton template, namely, a terminal template
for the class Terminal; a car door, a car destination panel,
and a car handler template for the class CarDoor, CarPanel,
and CarHandler, respectively; and a controller template for
the class Controller. The terminal template has four
instances, which represents the four different terminals
according to the TCOZ specifications. The other templates
have only one instance. The translation is a straightforward
application of Definition 16. We use the Terminal class as
an example to show the identification of the states,
transitions, guards, and synchronization. Its processes
mainly have an external choice pattern and a recursion
pattern as defined by its MAIN process:

recur extchoice MðPressDownÞ;MðDownOffÞ;ðð
MðCarApproachÞ;MðCarDepartÞÞ; SP Þ:

By applying the translation to each of the processes
PressDown, DownOff , CarApproach, and CarDepart, we
obtain the Timed Automaton template of the class
Terminal. The above translation is automated by our
translation tool. Then, by adding the object reference
information manually, such as the identification of each
different terminal, the whole automaton can be visualized
in UPPAAL. Similarly, Timed Automata are generated from
other system components, e.g., the template for class Door
is shown in Section 2.1. The translation result is stored in an
XML format, which can be readily imported by UPPAAL.
Now, we can use the simulator and verifier of UPPAAL to
simulate the system, as well as to model check some
invariants and real-time properties. The key point of the
railway system is to provide efficient services. The follow-
ing are some of the properties that can be formally specified
and verified using UPPAAL:

. Prop1. Whenever the car destination board receives a
request to a terminal, say, terminal 1, the railcar will
eventually get to that terminal within 600 seconds. It
can be translated into a Timed CTL as a bounded
liveness property.

. Prop2. The door must be open for no more than
10 seconds.

. Prop3. The system is deadlock free.

. Prop4. Whenever the railcar is moving, the car door
is closed.

UPPAAL verified that these properties hold for this given
model. As for reference, the time consumption for analyz-
ing each of the properties is listed below. The experiment
results are obtained on the Windows XP platform with
2 Gbyte memory and Intel 3.0 GHz CPU. N is the number of
terminals.

In summary, the Timed Automata patterns allow us to
enjoy a hierarchical system design using Timed Automata,
i.e., to apply a divide-and-conquer strategy to deal with the
complexity of the system design. A high-level design (as the
one above where highly coupled system behaviors are
encapsulated in one component) is easier to understand and
maintain. A high-level system design can be automatically
flattened (by applying the definitions plus optimization
techniques for reducing the number of states, as well as
clocks) and then verified using existing tools like UPPAAL.
Compared to the system design using timed patterns
directly, which solely focuses on dynamic behaviors, the
TCOZ-based design is heavy in modeling data and
functional aspects of the system. Because the timed patterns
are closely related to compositional operators in TCOZ, the
modeling of dynamic behaviors using timed patterns and
TCOZ share similar ideas.

6 CONCLUSION

For the last decades, a variety of formal modeling/
specification languages have been proposed for real-time
system design and verification. The various modeling and
verification techniques all have similarities and differences
to some degree. It is important for the formal method
community to understand how various techniques differ
from each another and how they may benefit from each
other. The techniques under consideration, namely, TCOZ/
Timed CSP and Timed Automata, deal with behavioral real-
time aspects of systems. Lying at each end of the spectrum
of formal modeling techniques, TCOZ is designed for the
structural specification of high-level complex system
requirements, whereas Timed Automata are used to design
timed models with simple clock constraints but with highly
automated verification support. In this work, we studied
both formalisms from a practical point of view, i.e., how can
they help each other? We are not arguing which of the two
is superior. Instead, we enrich TCOZ with verification
support by translating its models to Timed Automata and
enrich Timed Automata with composable patterns for high-
level system design.

The main contribution of the work is the rich set of timed
patterns, which covers all common hierarchical system
behaviors like deadline, timeout, and timedinterrupt. These
patterns are formally defined so as to achieve composibility in
the graphical representations. Moreover, we have shown that
new timed patterns may be composed naturally using our
timed patterns. These patterns not only provide a proficient
interchange media for translating time-enriched process
algebra specifications into Timed Automata but also provide
a generic reusable framework for developing real-time
systems solely using Timed Automata. As shown in Section 5,
by decomposing a complex system to subcomponents of
manageable size and then composing the subcomponents
using timed patterns, these patterns offer a systematic way of
fighting the great complexity in system design.

One of the future works is to develop fully automated
optimization techniques that could maximally reduce the
number of states and clocks while flattening the Timed
Automata patterns. This is important because the number
of clocks (and states) has a significant impact on the
performance of tools like UPPAAL. Another future work
is to integrate our prototype with UPPAAL for user

DONG ET AL.: TIMED AUTOMATA PATTERNS 857

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

convenience. A future work of theoretical interest is to
fully compare the expressiveness of timed process
algebras like Timed CSP and Timed Automata so as to
gain better support for verifying real-time systems.

ACKNOWLEDGMENTS

The authors would like to thank Hugh Anderson, Roger

Duke, Sun Jing, Wang Hai, Lars Grunske, and the

anonymous referees for their insightful comments on this

work. This research is partially supported by the research

grant R-252-000-201-112 funded by National University of

Singapore. Jun Sun is the corresponding author for this

paper.

REFERENCES

[1] R. Alur, C. Couroubetis, and D.L. Dill, “Model-Checking for Real-
Time Systems,” Proc. Fifth Ann. IEEE Symp. Logic in Computer
Science, pp. 414-425, 1990.

[2] R. Alur and D.L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, pp. 183-235, 1994.

[3] S. Bornot and J. Sifakis, “Relating Time Progress and Deadlines in
Hybrid Systems,” Proc. Int’l Workshop Hybrid and Real-Time
Systems, pp. 286-300, 1997.

[4] S. Bornot, J. Sifakis, and S. Tripakis, “Modeling Urgency in Timed
Systems,” Proc. Int’l Symp. Compositionality: The Significant
Difference, pp. 103-129, 1997.

[5] H. Bowman, “Modelling Timeouts without Timelocks,” Proc. Fifth
Int’l AMAST Workshop Formal Methods for Real-Time and Probabil-
istic Systems, pp. 334-353, 1999.

[6] H. Bowman and R. Gómez, “How to Stop Time Stopping,” Formal
Aspect of Computing, vol. 18, no. 4, pp. 459-493, 2006.

[7] H. Bowman, R. Gómez, and L. Su, “A Tool for the Syntactic
Detection of Zeno-Timelocks in Timed Automata,” Electronic Notes
in Theoretical Computer Science, vol. 139, no. 1, pp. 25-47, 2005.

[8] P. Brooke, “A Timed Semantics for a Hierarchical Design
Notation,” PhD dissertation, Univ. of York, 1999.

[9] S.D. Brooke, “A Model for Communicating Sequential Processes,”
PhD dissertation, Oxford Univ., 1983.

[10] A.M.K. Cheng, Real-Time Systems: Scheduling, Analysis, and
Verification. John Wiley & Sons, 2002.

[11] A. David and M.O. Möller, “From HUPPAAL to UPPAAL: A
Translation from Hierarchical Timed Automata to Flat Timed
Automata,” Technical Report RS-01-11, BRICS, Mar. 2001.

[12] J. Davies, Specification and Proof in Real-Time CSP. Cambridge
Univ. Press, 1993.

[13] J.S. Dong, N. Fulton, L. Zucconi, and J. Colton, “Formalizing
Process Scheduling Requirements for an Aircraft Operational
Flight Program,” Proc. First IEEE Int’l Conf. Formal Eng. Methods,
pp. 161-169, 1997.

[14] J.S. Dong, P. Hao, S.C. Qin, J. Sun, and W. Yi, “Timed Patterns:
TCOZ to Timed Automata,” Proc. Sixth Int’l Conf. Formal Eng.
Methods, pp. 483-498, 2004.

[15] J.S. Dong, P. Hao, J. Sun, and X. Zhang, “A Reasoning Method for
Timed CSP Based on Constraint Solving,” Proc. Eighth Int’l Conf.
Formal Eng. Methods, pp. 342-359, 2006.

[16] J.S. Dong, B.P. Mahony, and N. Fulton, “Modeling Aircraft
Mission Computer Task Rates,” Proc. World Congress on Formal
Methods, p. 1855, 1999.

[17] R. Duke and G. Rose, “Formal Object Oriented Specification Using
Object-Z,” Cornerstones of Computing, Macmillan, 2000.

[18] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Patterns in Property
Specifications for Finite-State Verification,” Proc. 21st Int’l Conf.
Software Eng., pp. 411-420, 1999.

[19] H. Fuhrmann, J. Koch, J. Rennhack, and R.v. Hanxleden, “The
Aerospace Demonstrator of DECOS,” Proc. Eighth Int’l IEEE Conf.
Intelligent Transportation Systems, pp. 19-24, 2005.

[20] C. Ghezzi, D. Mandrioli, and A. Morzenti, “Trio: A Logic
Language for Executable Specifications of Real-time System,”
J. Systems and Software, vol. 12, no. 2, pp. 107-123, May 1990.

[21] UML Resource Page, Object Management Group, http://
www.omg.org/uml/, 2008.

[22] V. Gruhn and R. Laue, “Patterns for Timed Property Specifica-
tions,” Electronic Notes in Theoretical Computer Science, vol. 153,
no. 2, pp. 117-133, 2006.

[23] L. Grunske, K. Winter, and R. Colvin, “Timed Behavior Trees and
Their Application to Verifying Real-Time Systems,” Proc. 18th
Australian Software Eng. Conf., pp. 211-222, 2007.

[24] D. Harel and E. Grey, “Executable Object Modeling with
Statecharts,” Computer, vol. 30, no. 7, pp. 31-42, July 1997.

[25] K. Havelund, A. Skou, K.G. Larsen, and K. Lund, “Formal
Modeling and Analysis of an Audio/Video Protocol: An
Industrial Case Study Using UPPAAL,” Proc. 18th IEEE Real-Time
Systems Symp., pp. 2-13, 1997.

[26] I.J. Hayes and M. Utting, “Deadlines Are Termination,” Proc. IFIP
Working Conf. Programming Concepts and Methods, 1998.

[27] C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[28] J. Hoenicke and E.-R. Olderog, “Combining Specification Techni-
ques for Processes, Data and Time,” Proc. Third Int’l Conf.
Integrated Formal Methods, pp. 245-266, 2002.

[29] F. Jahanian and A.K. Mok, “A Graph-Theoretic Approach for
Timing Analysis and Its Implementation,” IEEE Trans. Computers,
vol. 36, no. 8, pp. 961-975, Aug. 1987.

[30] S. Konrad and B.H.C. Cheng, “Real-Time Specification Patterns,”
Proc. 27th Int’l Conf. Software Eng., pp. 372-381, 2005.

[31] L.M. Lai and P. Watson, “A Case Study in Timed CSP: The
Railroad Crossing Problem,” Proc. Int’l Workshop Hybrid and Real-
Time Systems, pp. 69-74, 1997.

[32] K.G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, “Testing
Real-Time Embedded Software Using UPPAAL-TRON: An
Industrial Case Study,” Proc. Fifth ACM Int’l Conf. Embedded
Software, pp. 299-306, 2005.

[33] K.G. Larsen, P. Pettersson, and Y. Wang, “Uppaal in a Nutshell,”
Int’l J. Software Tools for Technology Transfer, vol. 1, nos. 1-2,
pp. 134-152, 1997.

[34] M. Lindahl, P. Pettersson, and Y. Wang, “Formal Design and
Analysis of a Gearbox Controller,” Springer Int’l J. Software Tools
for Technology Transfer, vol. 3, no. 3, pp. 353-368, 2001.

[35] N.A. Lynch and F.W. Vaandrager, “Action Transducers and
Timed Automata,” Formal Aspects of Computing, vol. 8, no. 5,
pp. 499-538, 1996.

[36] B. Mahony and J.S. Dong, “Timed Communicating Object Z,”
IEEE Trans. Software Eng., vol. 26, no. 2, pp. 150-177, Feb. 2000.

[37] B.P. Mahony and J.S. Dong, “Network Topology and a Case Study
in TCOZ,” Proc. 11th Int’l Conf. Z Users, pp. 308-327, 1998.

[38] J. Ouaknine and J. Worrell, “Timed CSP = Closed Timed Epsilon-
Automata,” Nordic J. Computing, vol. 10, no. 2, pp. 99-133, 2003.

[39] A.W. Roscoe, The Theory and Practice of Concurrency. Prentice Hall,
1997.

[40] S. Schneider, Concurrent and Real-Time Systems. John Wiley & Sons,
2000.

[41] J. Sifakis, “The Compositional Specification of Timed Systems—A
Tutorial,” Proc. 11th Int’l Conf. Computer Aided Verification, pp. 2-7,
1999.

[42] J. Sun, J.S. Dong, J. Liu, and H. Wang, “A Formal Object Approach
to the Design of ZML,” Annals of Software Eng., vol. 13, pp. 329-
356, 2002.

[43] J. Woodcock and J. Davies, Using Z: Specification, Refinement, and
Proof. Prentice Hall, 1996.

Jin Song Dong received the bachelor’s (first-
class honors) and PhD degrees in computing
from the University of Queensland in 1992 and
1996, respectively. From 1995 to 1998, he was a
research scientist at the Commonwealth Scien-
tific and Industrial Research Organisation, Aus-
tralia. Since 1998, he has been with the School
of Computing at the National University of
Singapore (NUS), where he is currently an
associate professor and a member of the PhD

supervisors at the NUS Graduate School. He is on the editorial board of
the Formal Aspects of Computing Journal and Innovations in Systems
and Software Engineering, A NASA Journal. His research interests
include formal methods and software engineering. Some of his papers
can be found at http://www.comp.nus.edu.sg/~dongjs.

858 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 6, NOVEMBER/DECEMBER 2008

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

Ping Hao received the bachelor’s degree in
telecommunication from the Huazhong Univer-
sity of Science and Technology, China, in 2000
and the PhD degree in computer science from
the National University of Singapore (NUS) in
2008. From 2005 to 2006, she was a research
assistant in the Software Engineering Labora-
tory, NUS. Her research interests include formal
specification languages, verification, and soft-
ware engineering. More details about her re-

search and background can be found at http://www.comp.nus.edu.sg/
~haoping.

Shengchao Qin received the BSc and PhD
degrees from the School of Mathematical
Sciences, Peking University, in 1997 and 2002,
respectively. He was a research fellow under the
Singapore-MIT alliance at the National Univer-
sity of Singapore from July 2002 to December
2004. Since 2005, he has been a lecturer in the
Department of Computer Science at Durham
University, United Kingdom. His research inter-
ests include formal methods, programming

languages, and embedded systems. More information about his
research can be found at http://www.dur.ac.uk/shengchao.qin.

Jun Sun received the bachelor’s and PhD
degrees from the School of Computing, National
University of Singapore (NUS), in 2002 and
2006, respectively. From 2005 to 2006, he was a
research fellow in the School of Computing,
NUS. Since 2006, he has been a Lee Kuan Yew
postdoctoral fellow in the Department of Com-
puter Science, NUS. His research interests are
mainly in formal system specification, verifica-
tion, and synthesis. In particular, he has been

working with a variety of different specification languages and notations
in order to develop practical tools for elegant system development. More
details about his research and background can be found at http://
www.comp.nus.edu.sg/~sunj.

Wang Yi received the PhD degree in computer
science from the Chalmers University of Tech-
nology, Sweden, in 1991. He is a professor in
real-time systems at Uppsala University, Swe-
den, and a Changjiang professor at North
Eastern University, China. From 1991 to 1992,
he was a postdoctoral fellow at Aalborg Uni-
versity, Denmark, before he joined the faculty of
science and technology at Uppsala University,
where he was a lecturer from 1992 to 1994, an

associate professor from 1994 to 2000, and has been a professor since
2000. His interests are mainly in the modeling and verification of
concurrent, distributed, and real-time systems, in particular, techniques
and tools for model-based design, analysis, and implementation of
embedded systems and their industrial applications. He is a cofounder
of three software tools for modeling and verification, including UPPAAL,
a widely used model checker for timed systems. His publications can be
found at http://user.it.uu.se/~yi/.

DONG ET AL.: TIMED AUTOMATA PATTERNS 859

Authorized licensed use limited to: National University of Singapore. Downloaded on January 24, 2009 at 07:29 from IEEE Xplore. Restrictions apply.

