Realizing Live Sequence Charts in SystemVerilog

Hai H. Wang Shengchao Qin
School of Electronics and Computer Science Department of Computer Science,
University of Southampton Durham University.
hw@ecs.soton.ac.uk shengchao.qgin@durham.ac.uk
Jun Sun Jin Song Dong
School of Computing School of Computing
National University of Singapore National University of Singapore
sunj@comp.nus.edu.sg dongjs@comp.nus.edu.sg
Abstract customers, additional application-specific hardware devices

(e.g., ASICs or FPGAs) may be added to embed the com-
The design of an embedded control system starts withputer into the system which it controls. The derivation of
an investigation of properties and behaviors of the processlow-level implementation from high-level, referred as syn-
evolving within its environment, and an analysis of the re- thesis, is a complicated process which requires tool assis-
quirement for its safety performance. In early stages, sys-tance.
tem requirements are often specified as scenarios of behav- |n ear|y stages of system engineering7 system require_
ior using sequence charts for different use cases. This specments are often specified as scenarios of behavior using use
ification must be precise, intuitive and expressive enough tocases or sequence charts. A use case is an informal de-
capture different aspects of embedded control systems. As &cription of a collection of possible scenarios involving the
rather rich and useful extension to the classical message sesystem’s components and its environment, while sequence
quence charts, Live Sequence Charts (LSC), which providecharts provide a formal means for specifying the scenar-
a rich collection of constructs for specifying both possible ios that instantiate the use cases. As a popu|ar require-
and mandatory behaViorS, are very suitable for dESigning ments |anguage, sequence charts like UML Sequence Di-
an embedded control system. However, it is not a trivial agrams [25] and ITU standard Message Sequence Charts
task to realize a high-level design model in executable pro- (MSCs) [15] have been used to capture the desired interre-
gram codes effectively and correctly. This paper tackles the|ationships between system components and between them
challenging task by providing a mapping algorithm to au- and the environment. These sequence charts often state
tomatically synthesize SystemVerilog programs from givenwhat might possibly occur, not whatmust occur, which
LSC specifications. means that they are not enough if we want to specify the
actual behavior of a reactive system in a scenario-based
fashion. To overcome this potential limitation in expressive
1 Introduction power, Damm and Harel [8] extended MSCs to incorpo-
ratelivenesgroperties, yielding a new sequence-based lan-
The design of an embedded control system is ideally de-guage called Live Sequence Charts (LSCs). LSCs may state
composed into a progression of related phases. It starts witfcenarios thamustoccur. For instance, a universal chart,
an investigation of properties and behaviors of the processPossibly preceded with a pre-chart, specifies mandatory be-
evolving within its environment, and an analysis of the re- haviors globally, i.e., once the system behavior matches its
quirement for its safety performance. From these is derivedPre-chart, the subsequent behavior must follow the main
a Specification of program_centered components of the Sys.Chart. On the level of a chart, events and conditions and
tem. The process then may go through a series of desingC&tiOﬂS are also labelled with modalities. LSCs also pro-
phaseS, ending ina program expressed in a h|gh level |an.\/ide structuring constructs, like sub—charts, branching and
guage. After translation into a machine code of a choseniterations, to build scenarios hierarchically.
computer, it can be executed at a high speed by electronic As a rather rich and useful extension to MSCs, LSCs
circuits. In order to achieve time performance required by provide a rich collection of constructs for specifying both

possible and mandatory behaviors. The play engine forchart. Whenever a communication sequence matches the
LSCs [12] provides an intuitive and easy way for system de- pre-chart, the system must proceed as specified by the main
signers toplay in expected scenarios of behavior guidy chart. A system run may activate a universal chart more
out LSC specifications for verification and validation pur- than once and some of the activations might overlap [18].
poses. For these reasons, we have decided to take LSCs
as the behavioral specificationlanguage in our framework Universal chart Figure 1 shows a universal chart as part of
for embedded system design. In [23], a method of gener-the mobile phone specification. This scena@penCover
ating Verilog programs from Statechart [9] has been pro- illustrates the interaction between the objects whentse
posed. Compared to Statechart, LSC serves a natural notaepens thecover. Once the cover is opened by the user, the
tion for stating scenario-based system requirements, whichmain chart is activated. Thehip is notified that thecover
is involved in even earlier stage of system development. is opened. If the phone is not playing music, the chip re-
After an LSC specification has been played-in and ver- quests thedisplayto display the main menu. Otherwise,
ified/tested using the play-out engine, an immediate ques-the music menu shall be displayed. The dot-lined diamond
tion is, how can we generate executable program code inshape denotes a cold condition. We remark that all vertical
order to proceed to the next development stage? Thislines are dotted in this chart and, therefore, all locations are
paper is to tackle this challenging problem by provid- cold. Lastly, thedisplay carries out a respective local ac-
ing a mapping algorithm to automatically synthesize Sys- tion, setMainMentor setMPBMeny to initialize the phone
temVerilog programs from given LSC specifications. We screen. o
choose SystemVerilog as a target language for our synthe-)) .)
sis process partly because our overall aim is to develop In this work, we focus on universal charts._ Existential
hardware/software mixed embedded systems, whereas Sys:harts are used for generating test benches in later stages.
temVerilog is a language suitable for both behavioral and Each chart is associated with a set of visible events. Only
structural specifications of such systems. Moreover, Sys-€Vents visible to a chart are constrained by the chart. A
temVerilog supportsassertionswhich can potentially be chart typically can|sts pf multlplellnstances (for instance,
used to specify certain requirement constraints carried overJSe€r, Cover, Chip andDisplay), which are represented as
from LSC specifications including liveness properties and Vertical lines graphically. Along with each line, there is a
non-functional constraints. The tool supports available for finite number of locations. A location carries the tempera-
SystemVerilog also allows u to verify/simulate the system ture annotation for progress within an instance. Intuitively,
design before the hardware/software partitioning process_locatlons can pe thought as the joint points of mstapce lines
Most importantly, SystemVerilog is popular in industry, and messagellne_s. A location may be labelled as eltherco_ld
e.g., it has been standardized by IEEE. or ho_t. A hot location means that a system run reaching this
This remainder of the paper is organized as follows. Sec-/0cation has to move beyond. A system run may stay put
tion 2.1 briefly introduces the notion of LSC. Section 2.2 at & cold location forever. Similarly, messages and condi-
review the relevant features of SystemVerilog. Section 3 tions are also labelled. A hot message must be received,
is devoted to a mapping from LSC specifications to Sys- whereas a cold one may get lost. A hc')t' condlthn must be
temVerilog programs and a brief discussion of its correct- Met, whereas violation of a cold condition terminates the
ness. Section 4 concludes the paper and discusses possibfé‘art- A location is labelled with a finite number of events

future works. (more than one if it is a co-region) and at most one condi-
tion.

2 Background Mobile phone specification The universal charts in Fig-
ure 2 and the one in Figure 1 constitute a self-containing

2.1 Live Sequence Charts set of scenarios, which specify a mobile phone specifica-

tion. This example is partially inspired by the phone sys-

There are two kinds of charts in LSC. Existential charts tem specification presented in [13]. The system consists of
are mainly used to describe possible scenarios of a systensix participating objects, aser, the cover, thedisplay, the
in the early stage of system development, i.e., the same rolespeakey the chip and the environment where the incoming
played by MSC except that existential charts are scoped.calls are from. Figure 2 illustrates scenarios of the system
In later stages, knowledge becomes available about wherbesidesOpenCoveri.e., the user closes the cover, an in-
a system run has progressed far enough for a specific useoming call arrives and the user picks up the phone and
age of the system to become relevant. Universal charts ardalks. All vertical lines in the charts are dotted, which means
then used to specify behaviors that should always be ex-that all locations along the lines are cold and, therefore, the
hibited. A universal chart is typically preceded with a pre- system may pause at any point of execution forever. This is
chart, which serves as the activation condition of the main possible because unexpected events like the battery runs out

OpenCover

User Cover Chip Display

' coverOpened

status!=mp3

. -
|

i : 1 displayMainMenu

1
: displayMP3Menu !

! setMP3Menu

Figure 1. Phone System Scenario: OpenCover

or the system breaks down may occur at any time. The setVerification Language) with ease of Verilog to provide a sin-
of visible events for each chart are exactly those appearedyle platform for both design and verification.

in the diagram except the scenafimk The messagelose , ,
from the user to the cover is forbidden in the scenitx, A SystemVerilog model is composed of modules,
which define nets connected by wires. Nets are com-

i.e., in order to carry out the scenario successfully, the user ; i

should not close the cover before the scenario completes. posed of processes (threads of executions), which execute
statementsThestatements SystemVerilog can be divided
into two groups — blocking statements and non-blocking

LSC also supports advanced MSC features like €O- giatements. Each individual statement can be labelled.

region, hierarchy, etc. Moreover, symbolic instances and

messages are used to group scenarios effectively. For a de- Blocking assignments, which may or may not being at-
tailed introduction on a complete list of features of LSC, tached with a time specification, block the execution of a
refer to [12]. LSC is far more expressive than MSC, which process until their completion. When a blocking assign-
makes it capable of expressing complicated scenario-basednent is executed, an eveais generated and added to the
requirements. However, we remark that the ability to spec- global event queud&ventQ Blocking assignment state-

ify hot and cold messages, i.e., whether a message is rements are sequential statements. Non-blocking assignment
guired to be received or may get lost, is redundant becausestatements, likalways fork...join, and implicit wire as-

of the facility for describing hot and cold locations. Es- signment statements, generate non-blocking region update
sentially, the temperature of the locations takes precedenceevents. Non-blocking assignment statements are concurrent
over the temperature of messages, so whether or not th@ssignments. The statements can be grouped into a single
message is received is determined entirely by the temperabegin— endor fork — join block.

ture of the message input. This questionable feature of LSC Th dules in S veril ft d
is recognized by Harel and Marelly who list the possible . e modules in System\Verilog are often connected us-

cases and conclude that the temperature of messages has H?}yg mterfaqes Wh:h .prO\?des a 2'%h |ng| dOf abztract:{on
semantic meaning [12]. Thus, in the following discussion, of connections. An interface Is defined independent from

the temperature of messages is discarded. modules.

SystemVerilog has a set of build-in datatypes and users
2.2 SystemVerilog can also define their own complex data structures. Sys-
temVerilog also provides several powerful ways for syn-

i chronizing parallel activities within a design or a test bench.
SystemVerilog, as one of the latest releases from IEEE

for the hardware design languages, extended Verilog by For more information about SystemVerilog, please refer
combining the Verification capabilities of HVL (Hardware to [1].

CloseCover

User Cover Chip Display
close
coverClosed
displayTime
setDisplayTime
Receive
Env Chip Speaker Display
ihcdmithalI i
startRing : ‘
. displayCallerlD |
setDisplayCaller
Talk
Env User Cover Chip Speaker Dis
open startRing
coverOpened
‘ ‘ o gpeakerOff
: talk : displayTimer
setDispl
Forbidden Elements
LSC close

Figure 2. Mobile phone system scenarios

3 From LSCs to SystemVerilog

1. module Phoné...ports..);
In this section, we build a link between LSC specifi- 2 //por.tS
. X . " 3 //variables
cations and SystemVerilog programs, i.e., an LSC specifi- .
o . . . 4. //tasks and functions
cation is mapped into a corresponding SystemVerilog pro-
: . 5. //control processes
gram. We show that such a mapping can be conducted in
- . 6 User use(...ports..);
a compositional manner. Moreover, the SystemVerilog pro-
. i 7 Env eny...ports..);
gram is modular and, therefore, allows possible later soft-
8 Cover covet...ports..);

ware/hareware partitioning.

9. Chip chig...ports..);
] 10. Display display...ports..);
3.1 The Synthesis Problem 11. Speaker speakér.ports..);

e) - , 12. endmodule
In an LSC specification, an object may participate in

multiple universal charts playing different roles, e.g., the

objectChipin the universal charts. A good practice of im- Figure 3. Top-level module example

plementing the system, however, is that the behaviors of

each object should be encapsulated in one package (a class

or module) for easy maintenance as well as code reusingtem can be connected to its environment. For instance, the
In this work, we not only want to systematically construct ports will be connected to a test bench during system sim-
a SystemVerilog program which is equivalent to the LSC ulation. After the input/outputs definitions, all global vari-
model, but also to do it in such a way that each object in ables (including variables dedicated to a universal chart) are
the LSC specification is mapped to a module in the Sys- declared, which will be wired to the relevant object (as we
temVerilog program. Thus, the module groups all roles shall see later). This top level module also contains a set
that the object plays in the universal charts. The systemof tasks and function definitions, which correspond to the
then consists of instances of all object modules running in external functions and conditions in the universal charts. In
parallel. In another words, we are tackling an instance of addition, there is a set of controlling processes to ensure the
the distributed synthesis problem. Distributed synthesis iscorrect order of execution. For the moment, we omit the
computationally expensive in general [19] and in the case details.

of LSC [6]. The approach we use follows the practical The key point here is that there should be one module
solution offered in [20] and later in [21], which sacrifices defined for each object type in the system and an object is
completeness in exchange of an efficient and sound way ofdefined as an instance of the module (which is defined in the
synthesizing a distributed system. The key idea is of us-top-level module). For instance, we have a module named
ing a fixed implementation template to avoid undecidabil- Cover corresponding to the obje@overin the specifica-

ity, i.e., using a bounded set of synchronization events totion. The objectoveris defined as an instance of the mod-
monitor global completion of universal charts locally so that ule Cover. The module defining the object type shall group
the global state machine is never constructed. However, theall its roles in different universal charts, e.g., instanoeer
works in [20, 21] never yield any executable program like shall be able to participate in all three charts shown in Fig-
SystemVerilog. By using unique constructors likievays ure 2. Moreover, we shall be able to identify which role to
offered in SystemVerilog, we show that we are able to not act dynamically during system runs. The details of the mod-
only realize their solution but also make the solution even ule Coverwill be shown later. All the objects are running

simpler. concurrently.
We do have modules defined the two environmental ob-
3.2 SystemVerilog Realization jectsUserandEnv. This may suggest that we only deal with

closed systems, i.e., environmental objects are manipulated
In the following, we will walk through the mappings in- as if they are parts of the system. We remark that we do
formally using the cell phone examples. A set of mapping handle open systems. The users (or system specifiers) are
rules will be presented later in this section. asked to distinguish the environmental objects from system
Figure 3 shows the top-level module of the System\Ver- objects. The modules synthesized for the environmental ob-
ilog program synthesized from the phone system specifica-jects are indeed processes which monitor the interaction be-
tion. It encapsulates everything about the phone specificatween the system and its environment so as to trigger the
tion. The parameters specify the communication interface.controlling events at the right execution point. This is a
This is necessary because reactive systems constantly intepractical approach to avoid the undecidability of the distrib-
act with their environments. Through the ports, this sys- uted synthesis problem for open systems. In other words,

eventopenis monitored, the process signals the control-

1. module Covex: - - ports- - -); ling process in the modulBhone(the third line above). It

2 // ports says that the objec@overis now ready to proceed to the
3 //vanable_s main chart of the chat®penCover(by negating the value
4. //controlling process of coveropencovermair). The fourth line sets a flag to
5. //for the role in chart OpenCover indicate that the chafpenCovehas been activated.

6 always@(open begin- - -end

7 //for the role in chart CloseCover always@(coveropencover main)

8 always@(close begin- - - end begin

10. always@(open begin- - -end opencovermain=!opencover main

1

. 2

9. //for the role in chart Talk 3. @useropencovermain
4

11. endmodule 5

end

The above is a controlling process in the top-level mod-
Figure 4. Object type module example ule. There is such a process for each and every universal
chart. Once the objeatover declares that it is ready to
.) } enter the main chart (by eventa@veropencovermair),
we achieve a correct-by-construction method by paying athe process waits for other participating objects to declare
reasonable price. A related work on adding liveness as-ihe same. Once all objects are ready, it triggers the event

sumption on the environment to ease the distributed SYN-@opencover mainso that all object enters the main simul-
thesis problem was discussed in [6]. The work in [21] diS- {aneously.

cussed a similar approach using a partial modelling of the

environment. 1. always@((opencovermain or
Grouping different roles of an object in one module re- cancelopencover)

quires identifying which role an object is to play dynami- iff opencoveractivated== 1)

cally. According to LSC semantics, all visible events of a if (opencovermain) begin

chart shall be monitored constantly. Whenever the pre-chart coverOpened= !coverOpened

of a universal chart is matched, the participating objects end else begin

shall cooperate to proceed as specified by the main chart, if (cancelopencover) begin

i.e., the objects shall play their roles corporately. Thus, $display(’Chart canceled);

we need controlling processes which dynamically decide end

whether a pre-chart has been matched and if all participat- end

ing objects in the universal chart are ready to proceed to the . - .
main chart. Once all the instances are ready to participate in the sce-

Inside the module for an instance, there are ports defin—nario’ the controlling process synchronizes the entering

itions, variable definitions as well as controlling processes. of the main chart among a_ll_par_tlmpatl_ng mstances_. In
Besides, there is orelwaysblock for each role which the the modules fpr each part|C|pat|_ng objects, there IS an
object could play in the universal charts. For instance, inthealways block I_|ke the .above Wh.'Ch responds fo either

module presented in Figure 4, there is ahgaysblock for opencovermain (meaning the object shall proceed Fo the

each role which th€overplays in the charts. The role is ac- main chart ofOpenCovey or cancelopencover (meaning

tivated only if the sequence of events on the instance in thethe activation has been terminated). The activation of the

pre-chart of the universal chart is matched. For instance, theChart may be terminated if an unexpected event (associated

alwaysblock for the role inOpenCoveis activated only if with this object or other objects) is engaged. For instance,

the evenbpenis engaged. Once activated, the object must me trﬂcei_?_pﬁ(n slpetar\]k?rOf;‘ Sh?:: trlggemrtgnd tlhen terminate
play its role in the main chart. e chartTalk. In that case, the evergncelopencover

is synchronized among the activated instances so that the

© X NI W

1. always@(open corresponding processes will be terminated. If the event
2. begin opencovermainis engaged (the third line), the events in
3. coveropencover main = the main chart occur in the time step (the fourth line). The
Icover opencover main d_uration of a time step can be set as a _u'ser.option. _In one
4. opencover activated= 1; time step, a super step of the' LSC spemﬁcgpon [12] is car-
5. end ried out unless there is explicit delay (specified using time-

out construct in LSC) in the chart. We do require that the in-
The above is the process capturing the role of the objectternal computation and communication shall be faster than
Coverin the pre-chart of cha®penCover Whenever the the arrival of external stimuli.

/ el \ ! e2 Y
2 e3
e e

Figure 5. Example charts: synchronization

As you have seen, events in LSC are mapped to primitive synchronization in SystemVerilog to simulate the effect of
SystemVerilog commands. For instance, message sendingparrier synchronization. Each event (as well as local ac-
is mapped to event output and message receiving is mappetions) is associated with an event handler. Only the handler
to event input. So are those compositional constructs likeis capable of engaging the event. Whenever an activated
sub-chart, iteration and conditional branch, which have their role of an instance enters the main chart of the respective
exact images in the SystemVerilog language. universal chart, it will register the set of visible events of

One problem we face when we do the mapping is that the chart that are associated with the instance. It is done by
SystemVerilog lacks the support for barrier synchronization synchronizing a set of special events with the event handlers
among multiple processes. Yet, it is unavoidable in LSC associated with the events. Whenever a role of the instance
models and necessary for synthesizing SystemVerilog pro-is ready to engage in a common event, it synchronizes with
grams. For instance, each and every horizontal line in thethe event handler. The event handler checks whether all reg-
specification represents a barrier synchronization, e.g., thastered roles are ready to engage in the event. If they do, the
horizontal line right after the pre-chart synchronizes the en- controlling process will engage in the event and so all the in-
tering of the main chart among all participating instances. stances proceed. Otherwise, the event handler simply waits.
A shared condition, e.g., the cold condition in the chart For instance, if botlel ande2 have engaged, becaushas
OpenCover synchronizes multiple instances as well, e.g., been registered by different roles, it can be engaged only
Chip andDisplay. We have already discussed how to syn- aftere3.
chronize the entering of a main chart. The same strategy
is applied for other barrier synchronization. That is, before Example For simplicity, we use the example in Figure 6
entering a Sub_chart’ all participating objects shall Signai atO illustrate our solution to the barrier SynChronization.
controlling process in thPhonemodule, and later enter the It is @ simple program generated from the charts in Fig-
sub-chart at once. Furthermore, barrier synchronization isure 57 Once evenel is engagedcountereis incremented.
needed for events visible to multiple universal charts. An countere is incremented again after eveeit is engaged.
event visible to multiple universal charts are allowed to en- Then objectl declares that it is ready to engagéy en-
gage if and only if all activations of the universal charts are 9aging in eventeadye. Sincecountere s greater than 1,
ready to engage in the event. it will be decremented by 1. Later, the objé2tdeclares it

is ready to engage Because noweountere is of value 1,
Example In Figure 5, after the occurrence of eventand the evenffire_e is engaged, which gives the permission for
&, the evene can only be engaged after evamtbecause the objects to engage in event o
e is synchronized by the two charts. The problem can be) _ o)
further complicated as the event could be visible to multi- All variables in the LSC specification are mapped to vari-

ple universal charts and each chart may be activated manyPles in the top level module of the SystemVerilog program.
times. o They are wired to the relevant instance module if necessary.

Local actions and conditions in the LSC specification are

In general, there could be infinite overlapping activations mapped to tasks and functions in the top-level module. We

of the same chart. The good news is that there is always ae€mark that making the variable globally accessible is un-
symmetry reduction which reduces the infinite overlapping avoidable if we are to support shared conditions in LSC.

activations to finite marfy We make use of the simple event For instance, the following is a task and function definition
appeared in the cha@penCover

1In [6], Bontemps and Schobbens have shown that every LSC has an
equivalent deterministic Bchi automaton that contains at most exponen- 2To save space, we have removed synchronization on entering the main
tially more states than there are locations in the LSC. chart, the module structure, etc.

XN oUW

e e e e N el e e =)
NSO kL= O

bit e1, €2, €3, e, fire_e, ready €;
byte unsigned counteg,
always@(ready e iff countere == 1)
begin
fire_e = !fire_g
countere = 0;
end
always@(ready e iff countere > 1)
countere = countere — 1;

. always@(el)
. begin

countere = countere+ 1;
e2 =le2;

readye = !readye,
@fire_e e =le;

. end

. alwayso(e2)
18.
19.
20.
21.
22.

begin
countere = countere+ 1;
e3 =le3;
@fire_e e=le;

end

Figure 6. Barrier synchronization example

©

10
11

We summarize our transformation rules as follows:

. function bit Cori ();

if (staté = mp3) begin
return1;
end else
begin
return 0;
end
endfunction

tasksetMainMenQ;

. //procedural codes
. endtask

e Rule 1: Top-level module

— An LSC specification is mapped to a top-level

SystemVerilog module.

— An object is mapped to an instance of the object

type module in the top-level module.

— Variables and functions are mapped to variables

and tasks in the top-level module.

e Rule 2: Object type module

mapped to a module in the SystemVerilog pro-
gram.

— For each role which the object could play in the
universal charts, there is oaévaysblock.

— Events, variables, functions visible to the object
are wired from the top-level module to the object
type module.

e Rule 3: Existential charts

— Existential charts are mapped to test benches.
3.3 Discussion

In this section, we briefly discuss the soundness of the
transformation. We adapted the LSC semantics presented
in [8] and extended in [22]. In a nutshell, the semantics
of a basic chart, i.e., Basic-MSC [15], is defined to consist
of all runs compatible with the partial ordering induced by
the chart and its annotations. The semantics of existential
charts is different from that of basic charts because existen-
tial charts, as universal charts, are scoped. Events invisible
to the chart may occur freely between any two successive
events in an execution of the chart. In this work, existential
charts are used to illustrate test cases only. Lastly, a trace
violates a universal chart if and only if it completes the pre-
chart but fails to conform to the main chart.

In [20], Sun and Dong have proved that distributed
processes can be synthesized by using a bounded set of sys-
temization events. Their idea is to monitor possible comple-
tion of the pre-charts and trigger synchronization events at
the proper execution time. A similar idea has been adapted
in this work. Furthermore, using SystemVerilog allows us
to simplify the task of monitoring possible matching of a
pre-chart because of the distinguishahl@aysconstruct.
That is, analwaysblock is activated if a given event se-
guence occurs, which closely corresponds to the semantics
of pre-chart. Therefore, the soundness of our approach is a
consequence of the result proved in [20] and the semantics
of thealwaysconstruct.

4 Conclusion

In this work, we have developed a strategy for systemat-
ically generating a SystemVerilog program from LSC spec-
ifications. In our system development process, system engi-
neers shall specify the system requirements using the notion
of LSC. After an LSC specification has been played-in and
verified/tested using the play-out engine, a prototype Sys-
temVerilog program is generated for the next stage of sys-
tem development. System engineers are encouraged to use
assertioroffered by SystemVerilog tools to simulate, verify

— Each object type in the LSC specification is and refine the generated prototype if necessary. Once the

system design is fully verified, SystemVerilog tools can be checking of LSC is Co-NP-complete, the distributed model-
used for software/hardware partition process. As for future checking is PSPACE complete and the distributed realiza-
works, we plan to develop a reliable tool support for our ap- tion problem is undecidable. In our work, we use a set of
proach. Furthermore, the natural problem we want to tackle special events (bounded by the maximum number of over-
is to find a systematic and efficient partition strategy. lapping activation of the universal charts and the number
As mentioned earlier, we made the assumption that all of the universal charts) to avoid undecidability. Thus, our
message passing are all synchronized for simplicity. Asyn-work can be viewed as a lightweight approach.
chronous message passing can be supported by explicitly In [11], Harel, Kugler and Pnueli re-investigated the syn-
modelling the behaviors of the communication buffer. Us- thesis problem of LSC by adopting a lightweight approach
ing advanced features like interfaces in SystemVerilog, we as well, i.e., they generate Statecharts from LSC and then
believe it should be reasonably straightforward. verify them for correctness, and thus avoid undecidability.
Our mapping does omit some features of LSC, for in- A similar approach is evidenqed in [5], .Where Bon.temps
stance, the modality of locations and existential charts. The@"d Egyed proposed a technique coupling translation and
modality of locations, i.e., whether the system shall move Verification to cope with undecidability. We remark that
beyond the location, is indeed liveness constraints. We be-SUch an approach certainly works for our approach as well
lieve it is not something to be taken care of during the syn- €XCept that we must deal the complexity of model-checking
thesis process. Rather, it shall be tested or asserted usin§f complicated distributed systems. In our approach, there
assertions after the SystemVerilog program is synthesized!S & cheaper way to make sure that our synthesized program
Our generation is based on universal charts. Existentiald0€s satisfy all the universal charts. That is, we generate
charts are used to generate test benches. For instance, FigzyStemVerilog monitoring processes (one for each univer-
ure 7 shows an existential chart illustrating the most com- S&l chart) from the same LSC specification and simulate the
mon scenario of the phone system. The difference betweerProgram alongside the monitoring processes. In [20], Dong

classic MSCs and existential charts is that existential charts2nd Sun tackled the synthesis problem of LSC using the no-
are more abstract, i.e., only visible events are required tolion of CSP and its algebraic laws. The difference between

occur in the specified sequence. We make use of the Sysghgir Worl_< and ours is that we target at concrete implemen-
temVerilog language constru$tonitorto monitor the vis- t&tion which favors later development.
ible events only and test whether the events happen in the
given order. Acknowledgment

As for related works, the synthesis problem of MSC has
been studied extensively [3, 2, 17, 24, 16, 17, 14]. The syn- Hai H. Wang is supported in part by the EU-funded TAO
thesis problem of LSC is initially discussed by Harel and project (IST-2004-026460). Shengchao Qin is supported in
Kugler in [10], in which they tackled the problem by defin- part by the EPSRC funded project EP/E021948/1.
ing the notion of consistency of LSC models. Their ap-
proach starts with constructinggiobal system automaton References
and decomposes it by different means (refer to [10] for de-
tails). Their approach su_ffers from the state explosion prob- [1] Accellora Org. SystemVerilog 3.1a Language Ref-
lem due to the construction of tiggobal system automaton erence Manual http://www.eda.org/sv/
which is often of huge size because of the distributed na- SystemVerilog$ _$3.1a.pdf , 2001.

t_ure thLSC;] and th? ‘%”d‘f”'y'”g Wie}k [:;]artlal orderhseman- [2] R.Alur, K. Etessami, and M. Yannakakis. Inference of Mes-
tics. The characteristic of our work is that we synthesize a sage Sequence Charts. Roceedings of the 22nd Interna-

modular SystemVerilog program which allows a reasonably tional Conference on Software Engineeripgges 304-313.

large set of behaviors permitted by the LSC specification. ACM Press, 2000.

In [7], Bontemps, Schobbens anading discussed the (3] R, Alurand M. Yannakakis. Model Checking of Message Se-
synthesis problem for a small subset of LSC (LSC without quence Charts. IRroceedings of the 10th International Con-
conditions, structuring constructs, modalities on locations ference on Concurrency Thegrgages 114-129. Springer,

and messages). They proposed a game-based semantics for 1999.

LSC, which leads to the notion of consistency of their LSC. [4] v. Bontemps. Relating Inter-Agent and Intra-Agent Spec-
Their work is later extended to handle all LSC constructs ifications (The Case of Live Sequence Chart®hD the-

but unbounded loop in [4]. In our approach, almost all LSC sis, Faculés Universitaires Notre-Dame de la Paix, Insti-
constructs are supported except complex time-related ones. tut d'Informatique (University of Namur, Computer Science
In [6], Bontemps and Schobbens investigated the complex- Dept), April 2005.

ity of various problems associated with LSC. The results [5] Y. Bontemps, P. Heymans, and P. Schobbens. Lightweight
are pretty negative, i.e., they showed that centralized model- Formal Methods for Scenario-Based Software Engineering.

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]
(14]

(15]

(16]

Receive& Talk

incomingCall

startRing

Cover

open

speakerOff

talk

Figure 7. Existential chart

In S. Leue and T. Systa, editoiScenariosvolume 3466 of
Lecture Notes in Computer Scienpages 174-192, 2005.

Y. Bontemps and P. Schobbens. The Complexity of Live Se-

guence Charts. IRoundations of Software Science and Com- [18]

putational Structures, 8th International Conference, FOS-
SACS 2005pages 364-378, 2005.

Y. Bontemps, P. Schobbens, and Giding. Synthesis of
Open Reactive Systems from Scenario-Based Specifications.
Fundamenta Informatica®2(2):139-169, July 2004.

W. Damm and D. Harel. LSCs: Breathing Life into Mes-
sage Sequence Chartsormal Methods in System Design
19(1):45-80, 2001.

D. Harel. Statecharts: A Visual Formulation for Complex
SystemsScience of Computer Programmirg(3):231-274,
1987.

D. Harel and H. Kugler. Synthesizing State-Based Object
Systems from LSC Specificationkternational Journal on
Foundations of Computer Sciende3(1):5-51, 2002.

D. Harel, H. Kugler, and A. Pnueli. Synthesis Revisited:
Generating Statechart Models from Scenario-Based Require-
ments. InFormal Methods in Software and Systems Model-
ing, pages 309-324, 2005.

D. Harel and R. MarellyCome, Let’s Play - Scenario-Based
Programming Using LSCs and Play-Engirgpringer, 2003.

D. Harel and R. MarellyPlay-Engine User's Guide2003.
O. Haugen and K. Stglen. STAIRS - Steps to Analyze In-

teractions with Refinement Semantics. In Perdita Stevens, [24]

Jon Whittle, and Grady Booch, editotdML 2003 volume
2863 ofLecture Notes in Computer Scienpages 388-402.
Springer, 2003.

ITU. Message Sequence Chart(MSRbpv 1999. Series Z:
Languages and general software aspects for telecommunica-
tion systems.

[25]

P. Kosiuczenko and M. Wirsing. Formalizing and Executing
Message Sequence Charts via Timed RewritiBgpctrical
Notes on Theoretical Computer Scien2g:1-25, 1999.

[17] K. Koskimies and E. Mkinen.

[19]

[20]

[21]

[22]

[23]

Automatic Synthesis of
State Machines from Trace DiagramSoftw. Pract. Exper.
24(7):643-658, 1994.

R. Marelly, D. Harel, and H. Kugler. Multiple Instances and
Symbolic Variables in Executable Sequence Chart®rts
ceedings of OOPSLA'Qpages 83-100, 2002.

A. Pnueli and R. Rosner. Distributed Reactive Systems are
Hard to Synthesize. IRroceedings 31st IEEE Symposium
on Foundation of Computer Sciend®90.

J. Sun and J. S. Dong. Synthesis of Distributed Processes
from Scenario-Based Specifications. In J. Fitzgerald, I. J.
Hayes, and A. Tarlecki, editorBprmal Methods 2005vol-

ume 3582 of_ecture Notes in Computer Scienpages 415—
431. Springer, 2005.

J. Sun and J. S. Dong. Design Synthesis from Interaction
and State-Based SpecificatiodEEE Trans. Software Eng.
32(6):349-364, 2006.

J. Sun and J. S. Dong. From Live Sequence Charts
to Implementation. Technical Report TRA1/07,
National University of Singapore, January 2007.

http://www.comp.nus.edu.sg/“sunj/Reports/proof.ps.

Viet-Anh Vu Tran, Shengchao Qin, and Wei-Ngan Chin. An
Automatic Mapping from Statecharts to Verilog. In Zhim-
ing Liu and Keijiro Araki, editorsFirst International Collo-
quium on Theoretical Aspects of Computing (ICTAC 2004)
volume 3407 ofLecture Notes in Computer Sciengages
187-203. Springer, 2004.

S. Uchitel and J. Kramer. A Workbench for Synthesising Be-
haviour Models from Scenarios. ICSE 2001 pages 188—
197. IEEE Computer Society, 2001.

UML Group. OMG UML Version 1.5. http://www.uml.org/,
June 2002.

