
Realizing Live Sequence Charts in SystemVerilog

Hai H. Wang
School of Electronics and Computer Science

University of Southampton
hw@ecs.soton.ac.uk

Shengchao Qin
Department of Computer Science,

Durham University.
shengchao.qin@durham.ac.uk

Jun Sun
School of Computing

National University of Singapore
sunj@comp.nus.edu.sg

Jin Song Dong
School of Computing

National University of Singapore
dongjs@comp.nus.edu.sg

Abstract

The design of an embedded control system starts with
an investigation of properties and behaviors of the process
evolving within its environment, and an analysis of the re-
quirement for its safety performance. In early stages, sys-
tem requirements are often specified as scenarios of behav-
ior using sequence charts for different use cases. This spec-
ification must be precise, intuitive and expressive enough to
capture different aspects of embedded control systems. As a
rather rich and useful extension to the classical message se-
quence charts, Live Sequence Charts (LSC), which provide
a rich collection of constructs for specifying both possible
and mandatory behaviors, are very suitable for designing
an embedded control system. However, it is not a trivial
task to realize a high-level design model in executable pro-
gram codes effectively and correctly. This paper tackles the
challenging task by providing a mapping algorithm to au-
tomatically synthesize SystemVerilog programs from given
LSC specifications.

1 Introduction

The design of an embedded control system is ideally de-
composed into a progression of related phases. It starts with
an investigation of properties and behaviors of the process
evolving within its environment, and an analysis of the re-
quirement for its safety performance. From these is derived
a specification of program-centered components of the sys-
tem. The process then may go through a series of design
phases, ending in a program expressed in a high level lan-
guage. After translation into a machine code of a chosen
computer, it can be executed at a high speed by electronic
circuits. In order to achieve time performance required by

customers, additional application-specific hardware devices
(e.g., ASICs or FPGAs) may be added to embed the com-
puter into the system which it controls. The derivation of
low-level implementation from high-level, referred as syn-
thesis, is a complicated process which requires tool assis-
tance.

In early stages of system engineering, system require-
ments are often specified as scenarios of behavior using use
cases or sequence charts. A use case is an informal de-
scription of a collection of possible scenarios involving the
system’s components and its environment, while sequence
charts provide a formal means for specifying the scenar-
ios that instantiate the use cases. As a popular require-
ments language, sequence charts like UML Sequence Di-
agrams [25] and ITU standard Message Sequence Charts
(MSCs) [15] have been used to capture the desired interre-
lationships between system components and between them
and the environment. These sequence charts often state
what might possiblyoccur, not whatmust occur, which
means that they are not enough if we want to specify the
actual behavior of a reactive system in a scenario-based
fashion. To overcome this potential limitation in expressive
power, Damm and Harel [8] extended MSCs to incorpo-
ratelivenessproperties, yielding a new sequence-based lan-
guage called Live Sequence Charts (LSCs). LSCs may state
scenarios thatmustoccur. For instance, a universal chart,
possibly preceded with a pre-chart, specifies mandatory be-
haviors globally, i.e., once the system behavior matches its
pre-chart, the subsequent behavior must follow the main
chart. On the level of a chart, events and conditions and
locations are also labelled with modalities. LSCs also pro-
vide structuring constructs, like sub-charts, branching and
iterations, to build scenarios hierarchically.

As a rather rich and useful extension to MSCs, LSCs
provide a rich collection of constructs for specifying both

possible and mandatory behaviors. The play engine for
LSCs [12] provides an intuitive and easy way for system de-
signers toplay in expected scenarios of behavior andplay
out LSC specifications for verification and validation pur-
poses. For these reasons, we have decided to take LSCs
as the behavioral specificationlanguage in our framework
for embedded system design. In [23], a method of gener-
ating Verilog programs from Statechart [9] has been pro-
posed. Compared to Statechart, LSC serves a natural nota-
tion for stating scenario-based system requirements, which
is involved in even earlier stage of system development.

After an LSC specification has been played-in and ver-
ified/tested using the play-out engine, an immediate ques-
tion is, how can we generate executable program code in
order to proceed to the next development stage? This
paper is to tackle this challenging problem by provid-
ing a mapping algorithm to automatically synthesize Sys-
temVerilog programs from given LSC specifications. We
choose SystemVerilog as a target language for our synthe-
sis process partly because our overall aim is to develop
hardware/software mixed embedded systems, whereas Sys-
temVerilog is a language suitable for both behavioral and
structural specifications of such systems. Moreover, Sys-
temVerilog supportsassertionswhich can potentially be
used to specify certain requirement constraints carried over
from LSC specifications including liveness properties and
non-functional constraints. The tool supports available for
SystemVerilog also allows u to verify/simulate the system
design before the hardware/software partitioning process.
Most importantly, SystemVerilog is popular in industry,
e.g., it has been standardized by IEEE.

This remainder of the paper is organized as follows. Sec-
tion 2.1 briefly introduces the notion of LSC. Section 2.2
review the relevant features of SystemVerilog. Section 3
is devoted to a mapping from LSC specifications to Sys-
temVerilog programs and a brief discussion of its correct-
ness. Section 4 concludes the paper and discusses possible
future works.

2 Background

2.1 Live Sequence Charts

There are two kinds of charts in LSC. Existential charts
are mainly used to describe possible scenarios of a system
in the early stage of system development, i.e., the same role
played by MSC except that existential charts are scoped.
In later stages, knowledge becomes available about when
a system run has progressed far enough for a specific us-
age of the system to become relevant. Universal charts are
then used to specify behaviors that should always be ex-
hibited. A universal chart is typically preceded with a pre-
chart, which serves as the activation condition of the main

chart. Whenever a communication sequence matches the
pre-chart, the system must proceed as specified by the main
chart. A system run may activate a universal chart more
than once and some of the activations might overlap [18].

Universal chart Figure 1 shows a universal chart as part of
the mobile phone specification. This scenarioOpenCover
illustrates the interaction between the objects when theuser
opens thecover. Once the cover is opened by the user, the
main chart is activated. Thechip is notified that thecover
is opened. If the phone is not playing music, the chip re-
quests thedisplay to display the main menu. Otherwise,
the music menu shall be displayed. The dot-lined diamond
shape denotes a cold condition. We remark that all vertical
lines are dotted in this chart and, therefore, all locations are
cold. Lastly, thedisplaycarries out a respective local ac-
tion, setMainMenuor setMP3Menu, to initialize the phone
screen. 2

In this work, we focus on universal charts. Existential
charts are used for generating test benches in later stages.
Each chart is associated with a set of visible events. Only
events visible to a chart are constrained by the chart. A
chart typically consists of multiple instances (for instance,
User, Cover, Chip andDisplay), which are represented as
vertical lines graphically. Along with each line, there is a
finite number of locations. A location carries the tempera-
ture annotation for progress within an instance. Intuitively,
locations can be thought as the joint points of instance lines
and message lines. A location may be labelled as either cold
or hot. A hot location means that a system run reaching this
location has to move beyond. A system run may stay put
at a cold location forever. Similarly, messages and condi-
tions are also labelled. A hot message must be received,
whereas a cold one may get lost. A hot condition must be
met, whereas violation of a cold condition terminates the
chart. A location is labelled with a finite number of events
(more than one if it is a co-region) and at most one condi-
tion.

Mobile phone specification The universal charts in Fig-
ure 2 and the one in Figure 1 constitute a self-containing
set of scenarios, which specify a mobile phone specifica-
tion. This example is partially inspired by the phone sys-
tem specification presented in [13]. The system consists of
six participating objects, auser, thecover, thedisplay, the
speaker, thechip and the environment where the incoming
calls are from. Figure 2 illustrates scenarios of the system
besidesOpenCover, i.e., the user closes the cover, an in-
coming call arrives and the user picks up the phone and
talks. All vertical lines in the charts are dotted, which means
that all locations along the lines are cold and, therefore, the
system may pause at any point of execution forever. This is
possible because unexpected events like the battery runs out

User Cover Chip

OpenCover

open

coverOpened

Display

status!=mp3

displayMainMenu

displayMP3Menu

setMainMenu

setMP3Menu

Figure 1. Phone System Scenario: OpenCover

or the system breaks down may occur at any time. The set
of visible events for each chart are exactly those appeared
in the diagram except the scenarioTalk. The messageclose
from the user to the cover is forbidden in the scenarioTalk,
i.e., in order to carry out the scenario successfully, the user
should not close the cover before the scenario completes.2

LSC also supports advanced MSC features like co-
region, hierarchy, etc. Moreover, symbolic instances and
messages are used to group scenarios effectively. For a de-
tailed introduction on a complete list of features of LSC,
refer to [12]. LSC is far more expressive than MSC, which
makes it capable of expressing complicated scenario-based
requirements. However, we remark that the ability to spec-
ify hot and cold messages, i.e., whether a message is re-
quired to be received or may get lost, is redundant because
of the facility for describing hot and cold locations. Es-
sentially, the temperature of the locations takes precedence
over the temperature of messages, so whether or not the
message is received is determined entirely by the tempera-
ture of the message input. This questionable feature of LSC
is recognized by Harel and Marelly who list the possible
cases and conclude that the temperature of messages has no
semantic meaning [12]. Thus, in the following discussion,
the temperature of messages is discarded.

2.2 SystemVerilog

SystemVerilog, as one of the latest releases from IEEE
for the hardware design languages, extended Verilog by
combining the Verification capabilities of HVL (Hardware

Verification Language) with ease of Verilog to provide a sin-
gle platform for both design and verification.

A SystemVerilog model is composed of modules,
which define nets connected by wires. Nets are com-
posed of processes (threads of executions), which execute
statements. Thestatementsin SystemVerilog can be divided
into two groups – blocking statements and non-blocking
statements. Each individual statement can be labelled.

Blocking assignments, which may or may not being at-
tached with a time specification, block the execution of a
process until their completion. When a blocking assign-
ment is executed, an evente is generated and added to the
global event queueEventQ. Blocking assignment state-
ments are sequential statements. Non-blocking assignment
statements, likealways, fork...join, and implicit wire as-
signment statements, generate non-blocking region update
events. Non-blocking assignment statements are concurrent
assignments. The statements can be grouped into a single
begin− endor fork− join block.

The modules in SystemVerilog are often connected us-
ing interfaces, which provides a high level of abstraction
of connections. An interface is defined independent from
modules.

SystemVerilog has a set of build-in datatypes and users
can also define their own complex data structures. Sys-
temVerilog also provides several powerful ways for syn-
chronizing parallel activities within a design or a test bench.

For more information about SystemVerilog, please refer
to [1].

displayTime

coverClosed

close

CloseCover

DisplayChipCoverUser

setDisplayTime

displayCallerID

startRing

incomingCall

SpeakerChipEnv

Receive

Display

setDisplayCaller

User Cover Chip SpeakerEnv Display

open

coverOpened

startRing

speakerOff

displayTimer

Talk

talk

closeLSC

Forbidden Elements

setDisplayTimer

Figure 2. Mobile phone system scenarios

3 From LSCs to SystemVerilog

In this section, we build a link between LSC specifi-
cations and SystemVerilog programs, i.e., an LSC specifi-
cation is mapped into a corresponding SystemVerilog pro-
gram. We show that such a mapping can be conducted in
a compositional manner. Moreover, the SystemVerilog pro-
gram is modular and, therefore, allows possible later soft-
ware/hareware partitioning.

3.1 The Synthesis Problem

In an LSC specification, an object may participate in
multiple universal charts playing different roles, e.g., the
objectChip in the universal charts. A good practice of im-
plementing the system, however, is that the behaviors of
each object should be encapsulated in one package (a class
or module) for easy maintenance as well as code reusing.
In this work, we not only want to systematically construct
a SystemVerilog program which is equivalent to the LSC
model, but also to do it in such a way that each object in
the LSC specification is mapped to a module in the Sys-
temVerilog program. Thus, the module groups all roles
that the object plays in the universal charts. The system
then consists of instances of all object modules running in
parallel. In another words, we are tackling an instance of
the distributed synthesis problem. Distributed synthesis is
computationally expensive in general [19] and in the case
of LSC [6]. The approach we use follows the practical
solution offered in [20] and later in [21], which sacrifices
completeness in exchange of an efficient and sound way of
synthesizing a distributed system. The key idea is of us-
ing a fixed implementation template to avoid undecidabil-
ity, i.e., using a bounded set of synchronization events to
monitor global completion of universal charts locally so that
the global state machine is never constructed. However, the
works in [20, 21] never yield any executable program like
SystemVerilog. By using unique constructors likealways
offered in SystemVerilog, we show that we are able to not
only realize their solution but also make the solution even
simpler.

3.2 SystemVerilog Realization

In the following, we will walk through the mappings in-
formally using the cell phone examples. A set of mapping
rules will be presented later in this section.

Figure 3 shows the top-level module of the SystemVer-
ilog program synthesized from the phone system specifica-
tion. It encapsulates everything about the phone specifica-
tion. The parameters specify the communication interface.
This is necessary because reactive systems constantly inter-
act with their environments. Through the ports, this sys-

1. module Phone(...ports...);
2. //ports
3. //variables
4. //tasks and functions
5. //control processes
6. User user(...ports...);
7. Env env(...ports...);
8. Cover cover(...ports...);
9. Chip chip(...ports...);
10. Display display(...ports...);
11. Speaker speaker(...ports...);
12. endmodule

Figure 3. Top-level module example

tem can be connected to its environment. For instance, the
ports will be connected to a test bench during system sim-
ulation. After the input/outputs definitions, all global vari-
ables (including variables dedicated to a universal chart) are
declared, which will be wired to the relevant object (as we
shall see later). This top level module also contains a set
of tasks and function definitions, which correspond to the
external functions and conditions in the universal charts. In
addition, there is a set of controlling processes to ensure the
correct order of execution. For the moment, we omit the
details.

The key point here is that there should be one module
defined for each object type in the system and an object is
defined as an instance of the module (which is defined in the
top-level module). For instance, we have a module named
Cover corresponding to the objectCover in the specifica-
tion. The objectcoveris defined as an instance of the mod-
ule Cover. The module defining the object type shall group
all its roles in different universal charts, e.g., instancecover
shall be able to participate in all three charts shown in Fig-
ure 2. Moreover, we shall be able to identify which role to
act dynamically during system runs. The details of the mod-
ule Coverwill be shown later. All the objects are running
concurrently.

We do have modules defined the two environmental ob-
jectsUserandEnv. This may suggest that we only deal with
closed systems, i.e., environmental objects are manipulated
as if they are parts of the system. We remark that we do
handle open systems. The users (or system specifiers) are
asked to distinguish the environmental objects from system
objects. The modules synthesized for the environmental ob-
jects are indeed processes which monitor the interaction be-
tween the system and its environment so as to trigger the
controlling events at the right execution point. This is a
practical approach to avoid the undecidability of the distrib-
uted synthesis problem for open systems. In other words,

1. module Cover(· · ·ports· · ·);
2. //ports
3. //variables
4. //controlling process
5. //for the role in chart OpenCover
6. always@(open) begin· · ·end
7. //for the role in chart CloseCover
8. always@(close) begin· · ·end
9. //for the role in chart Talk
10. always@(open) begin· · ·end
11. endmodule

Figure 4. Object type module example

we achieve a correct-by-construction method by paying a
reasonable price. A related work on adding liveness as-
sumption on the environment to ease the distributed syn-
thesis problem was discussed in [6]. The work in [21] dis-
cussed a similar approach using a partial modelling of the
environment.

Grouping different roles of an object in one module re-
quires identifying which role an object is to play dynami-
cally. According to LSC semantics, all visible events of a
chart shall be monitored constantly. Whenever the pre-chart
of a universal chart is matched, the participating objects
shall cooperate to proceed as specified by the main chart,
i.e., the objects shall play their roles corporately. Thus,
we need controlling processes which dynamically decide
whether a pre-chart has been matched and if all participat-
ing objects in the universal chart are ready to proceed to the
main chart.

Inside the module for an instance, there are ports defin-
itions, variable definitions as well as controlling processes.
Besides, there is onealwaysblock for each role which the
object could play in the universal charts. For instance, in the
module presented in Figure 4, there is onealwaysblock for
each role which theCoverplays in the charts. The role is ac-
tivated only if the sequence of events on the instance in the
pre-chart of the universal chart is matched. For instance, the
alwaysblock for the role inOpenCoveris activated only if
the eventopenis engaged. Once activated, the object must
play its role in the main chart.

1. always@(open)
2. begin
3. cover opencover main=

!cover opencover main;
4. opencover activated= 1;
5. end

The above is the process capturing the role of the object
Cover in the pre-chart of chartOpenCover. Whenever the

eventopen is monitored, the process signals the control-
ling process in the modulePhone(the third line above). It
says that the objectCover is now ready to proceed to the
main chart of the chartOpenCover(by negating the value
of cover opencover main). The fourth line sets a flag to
indicate that the chartOpenCoverhas been activated.

1. always@(cover opencover main)
2. begin
3. @user opencover main;
4. opencover main=!opencover main;
5. end

The above is a controlling process in the top-level mod-
ule. There is such a process for each and every universal
chart. Once the objectcover declares that it is ready to
enter the main chart (by event @cover opencover main),
the process waits for other participating objects to declare
the same. Once all objects are ready, it triggers the event
@opencover mainso that all object enters the main simul-
taneously.

1. always@((opencover main or
cancelopencover)

2. iff open cover activated== 1)
3. if (opencover main) begin
4. coverOpened= !coverOpened;
5. end else begin
6. if (cancelopencover) begin
7. $display(′′Chart canceled.”);
8. end
9. end

Once all the instances are ready to participate in the sce-
nario, the controlling process synchronizes the entering
of the main chart among all participating instances. In
the modules for each participating objects, there is an
always block like the above which responds to either
opencover main (meaning the object shall proceed to the
main chart ofOpenCover) or cancelopencover(meaning
the activation has been terminated). The activation of the
chart may be terminated if an unexpected event (associated
with this object or other objects) is engaged. For instance,
the trace〈open, speakerOff〉 shall trigger and then terminate
the chartTalk. In that case, the eventcancelopencover
is synchronized among the activated instances so that the
corresponding processes will be terminated. If the event
opencover main is engaged (the third line), the events in
the main chart occur in the time step (the fourth line). The
duration of a time step can be set as a user option. In one
time step, a super step of the LSC specification [12] is car-
ried out unless there is explicit delay (specified using time-
out construct in LSC) in the chart. We do require that the in-
ternal computation and communication shall be faster than
the arrival of external stimuli.

e2

e

e1

i2i1

e2

e3

e

i2i1

Figure 5. Example charts: synchronization

As you have seen, events in LSC are mapped to primitive
SystemVerilog commands. For instance, message sending
is mapped to event output and message receiving is mapped
to event input. So are those compositional constructs like
sub-chart, iteration and conditional branch, which have their
exact images in the SystemVerilog language.

One problem we face when we do the mapping is that
SystemVerilog lacks the support for barrier synchronization
among multiple processes. Yet, it is unavoidable in LSC
models and necessary for synthesizing SystemVerilog pro-
grams. For instance, each and every horizontal line in the
specification represents a barrier synchronization, e.g., the
horizontal line right after the pre-chart synchronizes the en-
tering of the main chart among all participating instances.
A shared condition, e.g., the cold condition in the chart
OpenCover, synchronizes multiple instances as well, e.g.,
Chip andDisplay. We have already discussed how to syn-
chronize the entering of a main chart. The same strategy
is applied for other barrier synchronization. That is, before
entering a sub-chart, all participating objects shall signal a
controlling process in thePhonemodule, and later enter the
sub-chart at once. Furthermore, barrier synchronization is
needed for events visible to multiple universal charts. An
event visible to multiple universal charts are allowed to en-
gage if and only if all activations of the universal charts are
ready to engage in the event.

Example In Figure 5, after the occurrence of evente1 and
e2, the evente can only be engaged after evente3 because
e is synchronized by the two charts. The problem can be
further complicated as the event could be visible to multi-
ple universal charts and each chart may be activated many
times. 2

In general, there could be infinite overlapping activations
of the same chart. The good news is that there is always a
symmetry reduction which reduces the infinite overlapping
activations to finite many1. We make use of the simple event

1In [6], Bontemps and Schobbens have shown that every LSC has an
equivalent deterministic B̈uchi automaton that contains at most exponen-
tially more states than there are locations in the LSC.

synchronization in SystemVerilog to simulate the effect of
barrier synchronization. Each event (as well as local ac-
tions) is associated with an event handler. Only the handler
is capable of engaging the event. Whenever an activated
role of an instance enters the main chart of the respective
universal chart, it will register the set of visible events of
the chart that are associated with the instance. It is done by
synchronizing a set of special events with the event handlers
associated with the events. Whenever a role of the instance
is ready to engage in a common event, it synchronizes with
the event handler. The event handler checks whether all reg-
istered roles are ready to engage in the event. If they do, the
controlling process will engage in the event and so all the in-
stances proceed. Otherwise, the event handler simply waits.
For instance, if bothe1 ande2 have engaged, becauseehas
been registered by different roles, it can be engaged only
aftere3.

Example For simplicity, we use the example in Figure 6
to illustrate our solution to the barrier synchronization.
It is a simple program generated from the charts in Fig-
ure 5.2 Once evente1 is engaged,counter e is incremented.
counter e is incremented again after evente2 is engaged.
Then objecti1 declares that it is ready to engagee by en-
gaging in eventready e. Sincecounter e is greater than 1,
it will be decremented by 1. Later, the objecti2 declares it
is ready to engagee. Because nowcounter e is of value 1,
the eventfire e is engaged, which gives the permission for
the objects to engage in evente. 2

All variables in the LSC specification are mapped to vari-
ables in the top level module of the SystemVerilog program.
They are wired to the relevant instance module if necessary.
Local actions and conditions in the LSC specification are
mapped to tasks and functions in the top-level module. We
remark that making the variable globally accessible is un-
avoidable if we are to support shared conditions in LSC.
For instance, the following is a task and function definition
appeared in the chartOpenCover:

2To save space, we have removed synchronization on entering the main
chart, the module structure, etc.

1. bit e1, e2, e3, e, fire e, ready e;
2. byte unsigned countere;
3. always@(ready e iff countere == 1)
4. begin
5. fire e = !fire e;
6. counter e = 0;
7. end
8. always@(ready e iff countere > 1)
9. counter e = counter e− 1;
10. always@(e1)
11. begin
12. counter e = counter e+ 1;
13. e2 =!e2;
14. ready e = !ready e;
15. @fire e e =!e;
16. end
17. always@(e2)
18. begin
19. counter e = counter e+ 1;
20. e3 =!e3;
21. @fire e e=!e;
22. end

Figure 6. Barrier synchronization example

1. function bit Con1();
2. if (state! = mp3) begin
3. return1;
4. end else
5. begin
6. return0;
7. end
8. endfunction

9. tasksetMainMenu();
10. //procedural codes
11. endtask

We summarize our transformation rules as follows:

• Rule 1: Top-level module

– An LSC specification is mapped to a top-level
SystemVerilog module.

– An object is mapped to an instance of the object
type module in the top-level module.

– Variables and functions are mapped to variables
and tasks in the top-level module.

• Rule 2: Object type module

– Each object type in the LSC specification is

mapped to a module in the SystemVerilog pro-
gram.

– For each role which the object could play in the
universal charts, there is onealwaysblock.

– Events, variables, functions visible to the object
are wired from the top-level module to the object
type module.

• Rule 3: Existential charts

– Existential charts are mapped to test benches.

3.3 Discussion

In this section, we briefly discuss the soundness of the
transformation. We adapted the LSC semantics presented
in [8] and extended in [22]. In a nutshell, the semantics
of a basic chart, i.e., Basic-MSC [15], is defined to consist
of all runs compatible with the partial ordering induced by
the chart and its annotations. The semantics of existential
charts is different from that of basic charts because existen-
tial charts, as universal charts, are scoped. Events invisible
to the chart may occur freely between any two successive
events in an execution of the chart. In this work, existential
charts are used to illustrate test cases only. Lastly, a trace
violates a universal chart if and only if it completes the pre-
chart but fails to conform to the main chart.

In [20], Sun and Dong have proved that distributed
processes can be synthesized by using a bounded set of sys-
temization events. Their idea is to monitor possible comple-
tion of the pre-charts and trigger synchronization events at
the proper execution time. A similar idea has been adapted
in this work. Furthermore, using SystemVerilog allows us
to simplify the task of monitoring possible matching of a
pre-chart because of the distinguishablealwaysconstruct.
That is, analways-block is activated if a given event se-
quence occurs, which closely corresponds to the semantics
of pre-chart. Therefore, the soundness of our approach is a
consequence of the result proved in [20] and the semantics
of thealwaysconstruct.

4 Conclusion

In this work, we have developed a strategy for systemat-
ically generating a SystemVerilog program from LSC spec-
ifications. In our system development process, system engi-
neers shall specify the system requirements using the notion
of LSC. After an LSC specification has been played-in and
verified/tested using the play-out engine, a prototype Sys-
temVerilog program is generated for the next stage of sys-
tem development. System engineers are encouraged to use
assertionoffered by SystemVerilog tools to simulate, verify
and refine the generated prototype if necessary. Once the

system design is fully verified, SystemVerilog tools can be
used for software/hardware partition process. As for future
works, we plan to develop a reliable tool support for our ap-
proach. Furthermore, the natural problem we want to tackle
is to find a systematic and efficient partition strategy.

As mentioned earlier, we made the assumption that all
message passing are all synchronized for simplicity. Asyn-
chronous message passing can be supported by explicitly
modelling the behaviors of the communication buffer. Us-
ing advanced features like interfaces in SystemVerilog, we
believe it should be reasonably straightforward.

Our mapping does omit some features of LSC, for in-
stance, the modality of locations and existential charts. The
modality of locations, i.e., whether the system shall move
beyond the location, is indeed liveness constraints. We be-
lieve it is not something to be taken care of during the syn-
thesis process. Rather, it shall be tested or asserted using
assertions after the SystemVerilog program is synthesized.
Our generation is based on universal charts. Existential
charts are used to generate test benches. For instance, Fig-
ure 7 shows an existential chart illustrating the most com-
mon scenario of the phone system. The difference between
classic MSCs and existential charts is that existential charts
are more abstract, i.e., only visible events are required to
occur in the specified sequence. We make use of the Sys-
temVerilog language construct$monitor to monitor the vis-
ible events only and test whether the events happen in the
given order.

As for related works, the synthesis problem of MSC has
been studied extensively [3, 2, 17, 24, 16, 17, 14]. The syn-
thesis problem of LSC is initially discussed by Harel and
Kugler in [10], in which they tackled the problem by defin-
ing the notion of consistency of LSC models. Their ap-
proach starts with constructing aglobal system automaton
and decomposes it by different means (refer to [10] for de-
tails). Their approach suffers from the state explosion prob-
lem due to the construction of theglobal system automaton,
which is often of huge size because of the distributed na-
ture of LSC and the underlying weak partial order seman-
tics. The characteristic of our work is that we synthesize a
modular SystemVerilog program which allows a reasonably
large set of behaviors permitted by the LSC specification.

In [7], Bontemps, Schobbens and Löding discussed the
synthesis problem for a small subset of LSC (LSC without
conditions, structuring constructs, modalities on locations
and messages). They proposed a game-based semantics for
LSC, which leads to the notion of consistency of their LSC.
Their work is later extended to handle all LSC constructs
but unbounded loop in [4]. In our approach, almost all LSC
constructs are supported except complex time-related ones.
In [6], Bontemps and Schobbens investigated the complex-
ity of various problems associated with LSC. The results
are pretty negative, i.e., they showed that centralized model-

checking of LSC is Co-NP-complete, the distributed model-
checking is PSPACE complete and the distributed realiza-
tion problem is undecidable. In our work, we use a set of
special events (bounded by the maximum number of over-
lapping activation of the universal charts and the number
of the universal charts) to avoid undecidability. Thus, our
work can be viewed as a lightweight approach.

In [11], Harel, Kugler and Pnueli re-investigated the syn-
thesis problem of LSC by adopting a lightweight approach
as well, i.e., they generate Statecharts from LSC and then
verify them for correctness, and thus avoid undecidability.
A similar approach is evidenced in [5], where Bontemps
and Egyed proposed a technique coupling translation and
verification to cope with undecidability. We remark that
such an approach certainly works for our approach as well
except that we must deal the complexity of model-checking
of complicated distributed systems. In our approach, there
is a cheaper way to make sure that our synthesized program
does satisfy all the universal charts. That is, we generate
SystemVerilog monitoring processes (one for each univer-
sal chart) from the same LSC specification and simulate the
program alongside the monitoring processes. In [20], Dong
and Sun tackled the synthesis problem of LSC using the no-
tion of CSP and its algebraic laws. The difference between
their work and ours is that we target at concrete implemen-
tation which favors later development.

Acknowledgment

Hai H. Wang is supported in part by the EU-funded TAO
project (IST-2004-026460). Shengchao Qin is supported in
part by the EPSRC funded project EP/E021948/1.

References

[1] Accellora Org. SystemVerilog 3.1a Language Ref-
erence Manual . http://www.eda.org/sv/
SystemVerilog$ \ $3.1a.pdf , 2001.

[2] R. Alur, K. Etessami, and M. Yannakakis. Inference of Mes-
sage Sequence Charts. InProceedings of the 22nd Interna-
tional Conference on Software Engineering, pages 304–313.
ACM Press, 2000.

[3] R. Alur and M. Yannakakis. Model Checking of Message Se-
quence Charts. InProceedings of the 10th International Con-
ference on Concurrency Theory, pages 114–129. Springer,
1999.

[4] Y. Bontemps. Relating Inter-Agent and Intra-Agent Spec-
ifications (The Case of Live Sequence Charts). PhD the-
sis, Facult́es Universitaires Notre-Dame de la Paix, Insti-
tut d’Informatique (University of Namur, Computer Science
Dept), April 2005.

[5] Y. Bontemps, P. Heymans, and P. Schobbens. Lightweight
Formal Methods for Scenario-Based Software Engineering.

Receive&Talk

talk

speakerOff

startRing

open

incomingCall

CoverSpeakerChipUserEnv

Figure 7. Existential chart

In S. Leue and T. Systa, editors,Scenarios, volume 3466 of
Lecture Notes in Computer Science, pages 174–192, 2005.

[6] Y. Bontemps and P. Schobbens. The Complexity of Live Se-
quence Charts. InFoundations of Software Science and Com-
putational Structures, 8th International Conference, FOS-
SACS 2005, pages 364–378, 2005.

[7] Y. Bontemps, P. Schobbens, and C. Löding. Synthesis of
Open Reactive Systems from Scenario-Based Specifications.
Fundamenta Informaticae, 62(2):139–169, July 2004.

[8] W. Damm and D. Harel. LSCs: Breathing Life into Mes-
sage Sequence Charts.Formal Methods in System Design,
19(1):45–80, 2001.

[9] D. Harel. Statecharts: A Visual Formulation for Complex
Systems.Science of Computer Programming, 8(3):231–274,
1987.

[10] D. Harel and H. Kugler. Synthesizing State-Based Object
Systems from LSC Specifications.International Journal on
Foundations of Computer Science, 13(1):5–51, 2002.

[11] D. Harel, H. Kugler, and A. Pnueli. Synthesis Revisited:
Generating Statechart Models from Scenario-Based Require-
ments. InFormal Methods in Software and Systems Model-
ing, pages 309–324, 2005.

[12] D. Harel and R. Marelly.Come, Let’s Play - Scenario-Based
Programming Using LSCs and Play-Engine. Springer, 2003.

[13] D. Harel and R. Marelly.Play-Engine User’s Guide, 2003.

[14] O. Haugen and K. Stølen. STAIRS - Steps to Analyze In-
teractions with Refinement Semantics. In Perdita Stevens,
Jon Whittle, and Grady Booch, editors,UML 2003, volume
2863 ofLecture Notes in Computer Science, pages 388–402.
Springer, 2003.

[15] ITU. Message Sequence Chart(MSC), Nov 1999. Series Z:
Languages and general software aspects for telecommunica-
tion systems.

[16] P. Kosiuczenko and M. Wirsing. Formalizing and Executing
Message Sequence Charts via Timed Rewriting.Electrical
Notes on Theoretical Computer Science, 25:1–25, 1999.

[17] K. Koskimies and E. M̈akinen. Automatic Synthesis of
State Machines from Trace Diagrams.Softw. Pract. Exper.,
24(7):643–658, 1994.

[18] R. Marelly, D. Harel, and H. Kugler. Multiple Instances and
Symbolic Variables in Executable Sequence Charts. InPro-
ceedings of OOPSLA’02, pages 83–100, 2002.

[19] A. Pnueli and R. Rosner. Distributed Reactive Systems are
Hard to Synthesize. InProceedings 31st IEEE Symposium
on Foundation of Computer Science, 1990.

[20] J. Sun and J. S. Dong. Synthesis of Distributed Processes
from Scenario-Based Specifications. In J. Fitzgerald, I. J.
Hayes, and A. Tarlecki, editors,Formal Methods 2005, vol-
ume 3582 ofLecture Notes in Computer Science, pages 415–
431. Springer, 2005.

[21] J. Sun and J. S. Dong. Design Synthesis from Interaction
and State-Based Specifications.IEEE Trans. Software Eng.,
32(6):349–364, 2006.

[22] J. Sun and J. S. Dong. From Live Sequence Charts
to Implementation. Technical Report TRA1/07,
National University of Singapore, January 2007.
http://www.comp.nus.edu.sg/˜sunj/Reports/proof.ps.

[23] Viet-Anh Vu Tran, Shengchao Qin, and Wei-Ngan Chin. An
Automatic Mapping from Statecharts to Verilog. In Zhim-
ing Liu and Keijiro Araki, editors,First International Collo-
quium on Theoretical Aspects of Computing (ICTAC 2004),
volume 3407 ofLecture Notes in Computer Science, pages
187–203. Springer, 2004.

[24] S. Uchitel and J. Kramer. A Workbench for Synthesising Be-
haviour Models from Scenarios. InICSE 2001, pages 188–
197. IEEE Computer Society, 2001.

[25] UML Group. OMG UML Version 1.5. http://www.uml.org/,
June 2002.

