
Integrating Probability with Time and Shared-Variable Concurrency

Huibiao Zhu

Software Engineering Institute
East China Normal University

hbzhu@sei.ecnu.edu.cn

Shengchao Qin

Department of Computer Science
University of Durham

shengchao.qin@durham.ac.uk

Jifeng He

Software Engineering Institute
East China Normal University

jifeng@sei.ecnu.edu.cn

Jonathan P. Bowen

Centre for Applied Formal Methods
London South Bank University

bowenjp@lsbu.ac.uk

Abstract

Complex software systems typically involve features like
time, concurrency and probability, where probabilistic com-
putations play an increasing role. It is challenging to for-
malize languages comprising all these features. In this pa-
per, we integrate probability, time and concurrency in one
single model, where the concurrency feature is modelled us-
ing shared-variable based communication. The probabil-
ity feature is represented by a probabilistic nondeterminis-
tic choice, probabilistic guarded choice and a probabilis-
tic version of parallel composition. We formalize an op-
erational semantics for such an integration. Based on this
model we define a bisimulation relation, from which an ob-
servational equivalence between probabilistic programs is
investigated and a collection of algebraic laws are explored.
We also implement a prototype of the operational semantics
to animate the execution of probabilistic programs.

1 Introduction

As probabilistic computations play an increasing role in
solving various problems [21], various proposals on proba-
bilistic languages have been reported [5, 6, 8, 14, 13, 15, 18,
19, 20]. Complex software systems typically involve impor-
tant features like real-time, probability and shared-variable
concurrency. Therefore, system designers would expect a
formal model that incorporates all these features to be avail-
able for them to use. However, to the best of our knowledge,
no one has integrated all these features in one model. In
this paper we tackle this challenging problem by proposing
a formal model for a language equipped with probability,
time and shared-variable concurrency. Our model is meant
to facilitate the specification of complex software systems.

The shared-variable mechanism is typically used for

communications among components running in parallel.
Although shared-variable concurrency can be seen in many
languages (e.g. the Java programming language, the Verilog
hardware description language), it proves to be challenging
to formalize it [11, 23, 24], not to mention other orthogonal
features like probability and time. In this paper we success-
fully tackle this challenge by integrating time, probability
and shared-variable concurrency in one model. The proba-
bility feature is reflected by the probabilistic nondeterminis-
tic choice, probabilistic guarded choice and the probabilistic
scheduling of actions from different concurrent components
in a program.

As advocated in Hoare and He’s Unifying Theories of
Programming (UTP) [12], three different styles of mathe-
matical representations are normally used: operational, de-
notational, and algebraic ones, among which the operational
style is the most intuitive one. In order to elaborate more on
the intuition behind the proposed language and to formally
define the behaviour of its programs, we start with the oper-
ational semantics in this paper. Upon the operational model,
we define a bisimulation relation, from which a collection
of algebraic laws are derived. The completeness of the al-
gebraic laws and the Galois connection between the oper-
ational and algebraic theories are beyond the scope of this
paper and would be addressed in future work.

Much related work has investigated the semantics for
probabilistic processes. Morgan and his colleagues ex-
plored the abstraction and refinement for probabilistic pro-
cesses using the weakest precondition (wp) approach [13,
14, 15]. Hartog and her colleagues have studied the equiv-
alence between operational and denotational semantics for
a variety of probabilistic processes [5, 6, 7, 8] using Ba-
nach Space approach [4]. Núñez extended Henessey’s
“testing semantics” for a variety of probabilistic processes

1

[18, 19, 20]. As an extension of the guarded command lan-
guage, a simple probabilistic guarded command language
was formalized in [10] under the UTP framework. A set of
algebraic laws were then explored based on the denotational
model.

The rest of this paper is organized as follows. Section 2
presents our language equipped with probability, time and
shared-variable concurrency. Section 3 is devoted to the op-
erational semantics. A bisimulation relation is then defined
in Section 4 and used for the basis of a set of algebraic laws
in Section 5. Section 6 gives a prototype animation of the
operational semantics and Section 7 concludes the paper.

2 Probabilistic Language PTSC

In this paper we propose a probabilistic language
PTSC (Probability, Time and Shared-variable Concur-
rency), which involves the integration of probability, time
and shared-variable concurrency. Apart from the concur-
rency feature that exists in many conventional languages,
probability and time are the other two main features of our
language. The synchronization of different parallel com-
ponents is based on time controls. Overall, our language
consists of the following main features:

(1) Probabilistic behaviour: This can be represented by
probabilistic nondeterminism, probabilistic guarded
choice or probabilistic parallel composition.

(2) Timed behaviour: This can be reflected by event guard
@ b (wait until b is satisfied) and time-delay command.

(3) Shared-variable concurrency: The concurrency model
employs a shared-variable based communication
mechanism.

The PTSC language has the following syntactical elements:

P ::= Skip | x := e | if b then P else P

| while b do P | @b P | #n P | P ; P

| P u P | P up P | P ‖p P
Note that:

(1) x := e is the atomic assignment. Skip behaves the
same as x := x.

(2) Regarding @b P , when the Boolean condition b is sat-
isfied, process P can have the chance to be sched-
uled. As we consider models for closed systems, the
program @b P can only let time advance when the
Boolean condition b is not met. For #n P , after n
time units elapse, process P can be scheduled.

(3) Similar to a conventional programming language,
if b then P else P stands for the conditional,
whereas while b do P stands for the iteration.

(4) The mechanism for parallel composition P ‖p Q is
a shared-variable interleaving model with probability
feature. If process P can perform an atomic action,

P ‖p Q has conditional probability p to do that atomic
action. On the other hand, if process Q can perform
an atomic action, P ‖p Q has conditional probability
1−p to perform that action.

(5) u stands for the nondeterministic choice, where up

stands for the probabilistic nondeterministic choice.
P up Q indicates that the probability for P up Q to
behave as P is p, where the probability for P up Q to
behave as Q is 1−p.

In order to facilitate algebraic reasoning, we enrich our
language with a guarded choice in our language. As our
parallel composition has probability feature, the guarded
choice also shares this feature. Guarded choice is classi-
fied into five types:

(1) []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}

(2) []i∈I{@bi Pi}

(3) []{#1 R}

(4) []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}

[][]k∈K{@bk Qk}

(5) []i∈I{@bi Pi}[]{#1 R}

Regarding []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}

in the guarded choice type (1) and (4), it should satisfy the
following healthiness conditions:

(a) ∀i • (
∨

j∈Ji
bij = true) and

(∀j1, j2 • j1 6= j2 ∧ (bij1 ∧ bij2) = false)

(b) +i∈I pi = 1

The first type is composed of a set of assignment-
guarded components. The condition (a) indicates that
for any i ∈ I , the Boolean conditions bij from
“choicej∈Ji

(bij&(xij := eij) Pij)” are complete and dis-
joint. Therefore, there will be exactly one component
bij&(xij := eij) Pij selected among all j ∈ Ji. Fur-
thermore, for any i ∈ I , the possibility for a component
(xij := eij) Pij (where bij is met) to be scheduled is pi and
it should satisfy the second healthiness condition.

The second type is composed of a set of event-guarded
components. If one guard is satisfied, the subsequent be-
haviour for the whole process will be followed by its subse-
quent behaviour of the satisfied component.

The third type is composed of one time delay component.
Initially, it cannot do anything except letting time advance
one unit.

The fourth type is the guarded choice composition of the
first and second type of guarded choice. If there exists one
bk (k ∈ K) being satisfied currently, then the event @ bk is
fired and the subsequent behaviour is Qk. If there is no sat-
isfied bk, the behaviour of the fourth type of guarded choice
is the same as that of the first type.

2

The fifth type is the compound of the second and third
type of guarded choice. Currently, if there exists i (i ∈ I)
such that bi is satisfied, then the subsequent behaviour of the
whole guarded choice is as Pi. On the other hand, if there
is no i (i ∈ I) such that bi is satisfied currently, then the
whole guarded choice cannot do anything initially except
letting time advance one unit. The subsequent behaviour is
the same as the behaviour of R.

As the first type of guarded choice does not have time
advancing behavior, there is no type of guarded choice com-
posing of the first and third type of guarded choice.

3 Operational Semantics

The operational semantics of a language models the be-
haviour of a program in terms of execution steps, which
are represented by transition relations. In our operational
model, the transitions are expressed in the form of Plotkin’s
Structural Operational Semantics (SOS) [22]:

〈P, σ〉
β

−→ 〈P ′, σ′〉

where, P stands for the program text that remains to be ex-
ecuted. σ is the current state of the program.

The transitions can be classified into four kinds:

(1) The first kind of transitions models an atomic action
with certain probability. In this paper, we consider as-
signment as an atomic action.

〈P, σ〉
c

−→p 〈P ′, σ′〉

where, p stands for the probability for program P to
perform the execution.

(2) The second type models the transition of a time delay.
Time advances in unit steps.

〈P, σ〉
1

−→ 〈P ′, σ′〉

(3) The third type models the selection of the two compo-
nents for non-deterministic choice. It can be expressed
as:

〈P, σ〉
τ

−→ 〈P ′, σ〉

(4) The fourth type models the triggered case of event @ b:

〈P, σ〉
v

−→ 〈P ′, σ〉

In what follows, we shall present the operational rules for
sequential programs, probabilistic guarded choice, and con-
current programs.

3.1 Sequential Process

A sequential program comprising a single assignment
performs an atomic action with probability 1. It cannot per-
form any other types of transitions.

〈x := e, σ〉
c

−→1 〈ε, σ[e/x]〉

where, ε stands for the empty process.

For the conditional statement if b then P else Q , the con-
trol flow will be passed to P with probability 1 if b is satis-
fied, otherwise it will be passed to Q with probability 1.

〈if b then P else Q , σ〉
c

−→1 〈P, σ〉, if b(σ)

〈if b then P else Q , σ〉
c

−→1 〈Q, σ〉, if ¬b(σ)

Here b(σ) returns the value of b in the state σ.

The transitions for iteration are similar to conditional.

〈while b do P, σ〉
c

−→1 〈P ; while b do P, σ〉, if b(σ)

〈while b do P, σ〉
c

−→1 〈ε, σ〉, if ¬b(σ)

Time delay can advance time in unit steps. It cannot do any
other types of transitions.

〈#n, σ〉
1

−→ 〈#(n − 1), σ〉, where n > 1.

〈#1, σ〉
1

−→ 〈ε, σ〉

The event @b in @b P is satisfied if Boolean condition b
is currently satisfied, otherwise it will let time advance one
unit. We use “

v
−→” to model the event-triggered transition

instead of “
c

−→’.

〈@b P, σ〉
v

−→ 〈P, σ〉, if b(σ)

〈@b P, σ〉
1

−→ 〈@b P, σ〉, if ¬b(σ)

The selection of process P or Q from P u Q is nondeter-
ministic.

〈P u Q, σ〉
τ

−→ 〈P, σ〉

〈P u Q, σ〉
τ

−→ 〈Q, σ〉

For the probabilistic nondeterministic choice P up Q, the
probability of the selection of P is p and the probability of
the selection of Q is 1 − p.

〈P up Q, σ〉
c

−→p 〈P, σ〉

〈P up Q, σ〉
c

−→1−p 〈Q, σ〉

The process P ; Q will behave like P initially. After P ter-
minates, Q will be executed.

if 〈P, σ〉
β

−→ 〈ε, σ′〉, then 〈P ; Q, σ〉
β

−→ 〈Q, σ′〉

if 〈P, σ〉
β

−→ 〈P ′, σ′〉, then 〈P ; Q, σ〉
β

−→ 〈P ′; Q, σ′〉

where
β

−→ can be
τ

−→,
v

−→,
c

−→p and
1

−→

3.2 Probabilistic Guarded Choice

In order to investigate algebraic properties for parallel
composition, we enrich the language with guarded choice.
A guarded choice construct may perform transitions de-
picted in the following five cases.

(1) Let P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}.

〈P, σ〉
c

−→pi
〈Pij , σ[eij/xij]〉, if bij(σ)

For any i ∈ I , there is only one j ∈ Ji such that

3

bij(σ) = true. This indicates that program P can execute
assignment xij := eij with probability pi when the corre-
sponding condition bij(σ) = true.

(2) Let P = []i∈I{@bi Pi}.

〈P, σ〉
v

−→ 〈Pi, σ〉, if bi(σ)

〈P, σ〉
1

−→ 〈P, σ〉, if
∧

i∈I bi(σ) = false

If there exists i (i ∈ I) such that bi(σ) is satisfied, the
event @bi is enabled, thus Pi is followed, as depicted in the
first rule. If ∀i • bi(σ) = false, no events are enabled, only
time can advance, as indicated in the second rule.

(3) Let P = []{#1 R}.

〈P, σ〉
1

−→ 〈R, σ〉

Process P can only do time advancing transition because
it only contains time-delay component. The subsequent be-
haviour after one time unit elapses is just the behaviour of
process R.

(4) Let P = []i∈I{[pi] choicej∈J (bij&(xij := eij) Pij)}

[][]k∈K{@ck Qk}

〈P, σ〉
v

−→ 〈Qk, σ〉, if ck(σ) = true

〈P, σ〉
c

−→pi
〈Pij , σ[eij/xij]〉,

if bij(σ) ∧ (∀k • ck(σ) = false).

For any k ∈ K, if ck(σ) = true, then the event “@ck” is
fired. The first transition reflects this fact. For any i ∈ I , if
bij(σ) = true and ∀k • ck(σ) = false, then process P can
perform the corresponding assignment “xij := eij”. Now
consider the special case “ck(σ) = true” and bij(σ) =
true, we only allow event “@ck” to be fired and do not al-
low process P to perform assignment xij := eij . This fact
is shown in the first transition and reflected by the additional
condition “∀ck • ck(σ) = false” in the second transition.

(5) Let P = []i∈I{@bi Pi}[]{#1 R}.

〈P, σ〉
v

−→ 〈Pi, σ〉 if bi(σ)

〈P, σ〉
1

−→ 〈R, σ〉 if
∧

i∈I bi(σ) = false

The first transition indicates that event “@bi” is fired if
bi(σ) = true. However, if all bi(σ) are evaluated to false,
then only time-advance branch can be selected.

3.3 Parallel Process

For brevity of presentation, we first define the following
function to represent intermediate processes:

par(P, Q, p1) =df

P ‖p1 Q if P 6= ε and Q 6= ε

P if P 6= ε and Q = ε

Q if P = ε and Q 6= ε

ε if P = ε and Q = ε

This intermediate format can reduce the number of transi-
tions for parallel composition by representing several cases
in one single rule.

Now we define two functions:

stable(〈P, σ〉) =df ¬(〈P, σ〉
τ

−→) and

stableE(〈P, σ〉) =df ¬(〈P, σ〉
v

−→)

The notation stable(〈P, σ〉) indicates that process P cannot
perform the transition representing nondeterministic choice
under state σ, while stableE(〈P, σ〉) indicates that process
P cannot perform event-triggered transitions under state σ.

A probabilistic parallel composition may perform transi-
tions of the following forms:

(1) (a) If 〈P, σ〉
τ

−→ 〈P ′, σ〉 and stable(〈Q, σ〉),

then 〈P ‖p1 Q, σ〉
τ

−→ 〈par(P ′, Q, p1), σ〉.

〈Q ‖p1 P, σ〉
τ

−→ 〈par(Q, P ′, p1), σ〉.

(b) If 〈P, σ〉
τ

−→ 〈P ′, σ, 〉 and

〈Q, σ〉
τ

−→ 〈Q′, σ〉,

then 〈P ‖p1 Q, σ〉
τ

−→ 〈par(P ′, Q′, p1), σ〉

(2) (a) If 〈P, σ〉
v

−→ 〈P ′, σ〉 and stable(〈Q, σ〉)

and stableE(〈Q, σ〉),

then 〈P ‖p1 Q, σ〉
v

−→ 〈par(P ′, Q, p1), σ〉.

〈Q ‖p1 P, σ〉
v

−→ 〈par(Q, P ′, p1), σ〉.

(b) If 〈P, σ〉
v

−→ 〈P ′, σ〉 and

〈Q, σ〉
v

−→ 〈Q′, σ〉,

then 〈P ‖p1 Q, σ〉
v

−→ 〈par(P ′, Q′, p1), σ〉

(3) If 〈P, σ〉
c

−→p2 〈P ′, σ′〉 and

stable(〈x, σ〉) and stableE(〈x, σ〉) (x = P, Q),

then 〈P ‖p1 Q, σ〉
c

−→p1×p2 〈par(P ′, Q, p1), σ′〉

〈Q ‖p1 P, σ〉
c

−→(1−p1)×p2
〈par(Q, P ′, p1), σ′〉

(4) If 〈P, σ〉
1

−→ 〈P ′, σ′〉 and 〈Q, σ〉
1

−→ 〈Q′, σ′〉
and

stable(〈x, σ〉) and stableE(〈x, σ〉) (x = P, Q),

then 〈P ‖p1 Q, σ〉
1

−→ 〈par(P ′, Q′, p1), σ′〉.

Transition (1)(a) stands for the case that one component
makes nondeterministic choice and another component is
stable. The whole process also makes a nondeterministic
choice under this case. However, if both components make
nondeterministic choice, then the whole process can make
nondeterministic choice and the subsequent behaviour is the

4

parallel composition of the remaining components. Transi-
tion (1)(b) reflects this situation.

The second type stands for the event-fired case. The
analysis is similar to the transitions of type (1). Transition
(3) covers the case of performing an atomic action. If pro-
cess P can perform an atomic action with probability p2,
then process P ‖p1 Q and Q ‖p1 P can also perform the
same atomic action with probability p1×p2 and (1−p1)×p2

respectively.
If both components can perform a time-advancing tran-

sition, then the whole parallel process can also let time ad-
vance. The aspect is reflected in transition (4).

4 Bisimulation

In operational semantics the behaviour of programs is
represented in terms of execution steps. A computation
is thus composed of a sequence of transitions. Two syn-
tactically different programs may have the same observa-
tional behaviour. This means that we need to define pro-
gram equivalence (conventionally denoted ≈) based on a
reasonable abstraction. In considering the equivalence of
the programs for our language, bisimulation is a useful ap-
proach. It will also be applied in exploring algebraic laws
of our language.

In what follows we shall give several auxiliary defini-
tions before we present the definition for bisimulation.

Definition 1 We define the transition relation
id

=⇒p as fol-
lows:

〈P, σ〉
id

=⇒p 〈P ′, σ〉

=df either P ′ = P and p = 1

or

∃n, P1, p1, . . . , Pn, pn •

〈P, σ〉
β1
−→p1 〈P1, σ〉 . . .

βn
−→pn

〈Pn, σ〉

and Pn = P ′ and p = p1 × . . . × pn

where
βi
−→pi

can be of the forms
c

−→pi
,

τ
−→ and

v
−→. We

assume pi = 1 in the latter two cases.

Note that transition relation “
id

=⇒p” represents a se-
quence of transitions which keep the program state un-
changed.

Definition 2 We define the following two transition rela-
tions:

(1) 〈P, σ〉
c

=⇒p 〈P ′, σ′〉

=df ∃P1 • 〈P, σ〉
id

=⇒p1 〈P1, σ〉 and

〈P1, σ〉
c

−→p2 〈P ′, σ′〉 and

p = p1 × p2

(2) 〈P, σ〉
1

=⇒p 〈P ′, σ〉

=df ∃P1 • 〈P, σ〉
id

=⇒p 〈P1, σ〉 and

〈P1, σ〉
1

−→ 〈P ′, σ〉

Note that the relation
c

=⇒p is actually a composition of
id

=⇒p1 and
c

−→p2 (p = p1×p2), while
1

=⇒p is a composition

of
id

=⇒p and
1

−→. These two auxiliary relations will help
us to present our bisimulation relation in a more abstract
manner with respect to atomic actions and time-advancing.

Definition 3 If a transition 〈P, σ〉
β

=⇒p1 〈P ′, σ′〉 is
duplicated n times, we denote it as

〈P, σ〉
β

=⇒n,p1 〈P ′, σ′〉

where
β

=⇒p1 can be of the form
c

=⇒p1 or
1

=⇒p1 .

Definition 4 A symmetric relation R is a bisimulation if
and only if ∀ 〈P, σ〉R〈Q, σ〉

(1) If 〈P, σ〉
x

−→ 〈P ′, σ〉,

then ∃Q′ • 〈Q, σ〉 (
τ

−→ ∨
v

−→)∗ 〈Q′, σ〉 and

〈P ′, σ〉R〈Q′, σ〉.

where,
x

−→ can be of the transition type
τ

−→ or
v

−→.

(2) If 〈P, σ〉
c

=⇒n1,p1 〈P ′, σ′〉,

(2-1) if σ 6= σ′, then ∃Q′, n2, p2 •

〈Q, σ〉
c

=⇒n2,p2 〈Q′, σ′〉 and

〈P ′, σ′〉R〈Q′, σ′〉 and

n1 × p1 = n2 × p2.

(2-2) if σ = σ′, then

either

〈P ′, σ′〉R〈Q, σ′〉 and n1 × p1 = 1

or ∃Q′, n2, p2 •

〈Q, σ〉
c

=⇒n2,p2 〈Q′, σ′〉 and

〈P ′, σ′〉R〈Q′, σ′〉 and

n1 × p1 = n2 × p2.

(3) If 〈P, σ〉
1

=⇒n1,p1 〈P ′, σ〉,

then ∃Q′, n2, p2 •

〈Q, σ〉
1

=⇒n2,p2 〈Q′, σ〉 and

〈P ′, σ〉R〈Q′, σ〉 and

n1 × p1 = n2 × p2.

Two configurations should have the same interface when
studying their equivalence; i.e., their state parts should be

5

the same. Our bisimulation relation is based on three dif-
ferent kinds of observations: a τ transition or a v-transition
(triggered by an event), atomic action, and time advancing.

Note that (2-2) in the above definition models the case
that if a process performs an atomic action without any con-
tribution to the program state change, then its bisimilar pro-
cess may or may not perform an atomic action with similar
effect. This partly reflects the concept of weak bisimulation
[16, 17].

Lemma 1 If S1 and S2 are bisimulations, then the follow-
ing relations are also bisimulations:

(1) Id (2)S1 ◦ S2 (3) S1 ∪ S2

where, Id is the identity relation and S1 ◦ S2 stands for the
relational composition of S1 and S2.

Definition 5
(1) Two configurations 〈P1, σ〉 and 〈P2, σ〉 are bisimilar,
written as 〈P1, σ〉 ≈ 〈P2, σ〉, if there exists a bisimulation
relation R such that 〈P1, σ〉 R 〈P2, σ〉.

(2) Two processes P and Q are bisimilar, denoted as P ≈
Q, if for any state σ

〈P, σ〉 ≈ 〈Q, σ〉

Lemma 2 ≈ is an equivalence relation.

Theorem 3 ≈ is a congruence.
Proof We can proceed the proof by structural induction.
The detailed proof is left in Appendix B. 2

This theorem indicates that bisimilar relation ≈ is preserved
by all operators.

5 Algebraic Laws

Operational semantics can be used to deduce interesting
properties of programs. In this section we investigate the
algebraic laws of our timed language with probability and
shared-variable concurrency.

For assignment, conditional, iteration, nondeterminis-
tic choice and sequential composition, our language enjoys
similar algebraic properties as those reported in [9, 12]. In
what follows, we shall only focus on novel algebraic prop-
erties with respect to time, probabilistic nondeterministic
choice and parallel composition.

Two consecutive time delays can be combined into a sin-
gle one, where the length of the delay is the sum of the
original two lengths.

(delay-1) #n; #m = #(n + m)

Probabilistic nondeterministic choice is idempotent.

(prob-1) P up P = P

However, it is not purely symmetric and associative. Its
symmetry and associativity rely on the change of the asso-
ciated probabilities:

(prob-2) P up1 Q = Q u1−p1 P

(prob-3) P up (Q uq R) = (P ux Q) uy R

where x = p/(p+q−p×q) and y = p+q−p×q

Sequential composition also distributes through probabilis-
tic nondeterministic choice.

(prob-4) P ; (Q up1 R) = (P ; Q) up1 (P ; R)

(prob-5) (P up1 Q); R = (P ; R) up1 (Q; R)

The proof for law (prob-3) is given in Appendix C. Other
proofs are similar and omitted.

Probabilistic parallel composition is also not purely sym-
metric and associative. Its symmetry and associativity rely
on the change of the associated probabilities as well.

(par-1) P ‖p Q = Q ‖1−p P

(par-2) P ‖p (Q ‖q R) = (P ‖x Q) ‖y R

where, x = p/(p+q−p×q) and y = p+q−p×q

In what follows we give a collection of parallel expan-
sion laws, which enable us to expand a probabilistic parallel
composition to a guarded choice construct. As mentioned
earlier, there exist five types of guarded choice. To take
into account a parallel composition of two arbitrary guarded
choices, we end up with fifteen different expansion laws.

The first five laws we shall discuss are with respect
to parallel composition of assignment-guarded choice with
any other choices. For brevity, we assume the first compo-
nent is an assignment-guarded choice. In what follows, we
shall list three laws, with the rest two left in Appendix A.

If the second component is also an assignment-guarded
choice, the scheduling rule is that any assignment could
be scheduled with the associated probability provided that
its Boolean condition is satisfied. Suppose the assignment
guard from the first component is scheduled, the subsequent
behaviour is the parallel composition of the remaining pro-
cess of the first component with the whole second compo-
nent. Law (par-3-1) below depicts this case.

(par-3-1) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl) Pkl)}

Then
P ‖r Q

= []i∈I{[r × pi] choicej∈Ji
(bij&(xij := eij)

par(Pij , Q, r)}

[][]k∈K{[(1 − r) × qk] choicel∈Lk
(bkl&(xkl := ekl)

par(P, Qkl, r)}

6

If the second component is an event-guarded choice, the
behaviour of the parallel composition can be described as
the guarded choice of a set of assignment-guarded compo-
nents and a set of event-guarded components. If an assign-
ment guard (from the first component) is scheduled first, the
subsequent behaviour is the parallel composition of the re-
maining part of the first component (Pij) with the second
component (Q); if an event guard is triggered, the subse-
quent behaviour is the parallel composition of the first com-
ponent (P) with the remaining part of the second compo-
nent (Qk). This is presented in law (par-3-2).

(par-3-2) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}

and

Q = []k∈K{@ck Qk}

Then
P ‖r Q

= []i∈I{[pi] choicej∈Ji
(bij&(xij := eij)par(Pij , Q, r)}

[][]k∈K{@ck par(P, Qk , r)}

If the second component is a time delay construct, then
only assignment guards can be scheduled initially. For the
whole parallel composition, the subsequent behaviour fol-
lowing the scheduled assignment guard is the parallel com-
position of the remaining part of the first component (Pij)
with the time delay component. The whole process does not
have time delay component. This case is expressed in law
(par-3-3).

(par-3-3) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)} and

Q = []{#1 R}

Then

P ‖r Q

= []i∈I{[pi] choicej∈Ji
(bij&(xij := eij)par(Pij , Q, r))}

In what follows, we consider parallel compositions
where the first component is an event-guarded choice, while
the second component can be of any form. We shall present
three laws (law (par-3-6) to (par-3-8)) with the rest listed in
Appendix A.

If the second component is also an event-guarded
choice, there are several scenarios. If one guard from
the first component is triggered but no guards from the
second component are triggered, the subsequent behaviour
is the parallel composition of the remaining part of the
first component with the second component. If two guards
from both components are triggered simultaneously, the
subsequent behaviour is the parallel composition of the
remaining processes of both sides. This is illustrated in law
(par-3-6).

(par-3-6) Let P = []i∈I{@bi Pi} and

Q = []j∈J{@cj Qj}

Then

P ‖r Q

= []i∈I{@(bi ∧ ¬c) par(Pi, Q, r)}

[][]j∈J{@(cj ∧ ¬b) par(P, Qj , r)}

[][]i∈I∧j∈J{@(bi ∧ cj) par(Pi, Qj , r)}

where, b = ∨i∈I bi and c = ∨j∈J cj

If the second component is a time delay construct, the
whole process will wait for some events to be triggered.
The whole process can also let time advance. Law (par-3-7)
expresses this case.

(par-3-7) Let P = []i∈I{@bi Pi} and Q = []{#1 R}

Then
P ‖r Q = []i∈I{@bi par(Pi, Q, r)}[]{#1 par(P, R, r)}

If the second component is the guarded choice of a set of
assignment-guarded components and a set of event-guarded
components, any assignment guard can be scheduled. As
both components have event-guard components, there
are also three possibilities for the guards to be triggered,
as discussed in (par-3-6). This case is described in law
(par-3-8).

(par-3-8) Let P = []i∈I{@bi Pi} and

Q = []j∈J{[qj] choicek∈Kj
(bjk&(xjk := ejk) Qjk)}

[][]l∈L{@cl Rl}

Then
P ‖r Q

= []j∈J{[qj] choicek∈Kj
(bij&(xjk := ejk)par(Pjk , Q, r))}

[][]i∈I{@(bi ∧ ¬c) par(Pi, Q, r)}

[][]l∈L{@(cl ∧ ¬b) par(P, Rl, r)}

[][]i∈I∧l∈L{@(bi ∧ cl) par(Pi, Ql, r)}

where, b = ∨i∈I bi and c = ∨l∈L cl

We shall next consider the parallel composition where
the first component is a time-delay guarded construct. We
present one law (par-3-10) below with the other two listed
in Appendix A.

The following law captures the case where the second
component is also a time-delay guarded construct. The
whole process performs a time delay and then behaves as
the parallel composition of the remaining parts from both
sides:

(par-3-10) Let P = []{#1 R} and Q = []{#1 T}}

Then
P ‖r Q = []{#1 par(R, T, r)}

We now move to the parallel composition where the
first component comprises both assignment-guarded com-
ponents and event-guarded components. The following law
(par-3-14) captures the scenario where the second com-

7

ponent consists of both event-guarded choices and time-
delays:

(par-3-14) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}

[][]k∈K{@bk Rk}

and Q = []l∈L{@cl Ql}[]{#1 T}

Then

P ‖r Q

= []i∈I{[pi] choicej∈J (bij&(xij := eij)par(Pij , Q, r))}

[][]k∈K{@(bk ∧ ¬c) par(Rk , Q, r)}

[][]l∈L{@(cl ∧ b) par(P, Ql, r)}

[][]k∈K∧l∈L{@(bk ∧ cl) par(Rk, Ql, r)}

where, b = ∨k∈K bk and c = ∨l∈L cl

Another similar law (par-3-13) is left in Appendix A.

The following law (par-3-15) is about the parallel com-
position of two guarded choices composing of both event-
guarded components and time delay components.

(par-3-15) Let P = []i∈I{@bi Pi}[]{#1 R} and

Q = []j∈J{@cj Qj}[]{#1 T}

Then

P ‖r Q

= []k∈K{@(bi ∧ ¬c) par(Pi, Q, r)}

[][]j∈J{@(cj ∧ ¬b) par(P, Qj , r)}

[][]j∈J{@(bi ∧ cj) par(Pi, Qj , r)}

[]{#1 par(R, T, r)}

where, b = ∨i∈I bi and c = ∨j∈J cj

6 Animation of Operational Semantics

Operational semantics provides a set of transition rules
that models how a program performs step by step. If we
can have an executed version of operational semantics, the
correctness of operational semantics can be checked from
various test results. This means that a simulator for the op-
erational semantics of our proposed language is highly de-
sirable.

Transition rules for the operational semantics can be
translated into Prolog logic programming clauses [3]. Pro-
log has been successfully applied in rapid-prototyping, in-
cluding [1, 2]. Building on this, for the development of the
simulator of PTSC, we have selected Prolog as our program-
ming language.

The configuration in a transition can be expressed as a
list (indicated by square brackets) in Prolog:

[P, Sigma]

where state Sigma can also be implemented as a list that
contains values for program variables.

The transitions for the operational semantics can be di-
rectly translated into Prolog clauses. For some individual
specific transitions, there may be several transitions for that
kind of transition expressed in Prolog because it covers sev-
eral different cases. For example, for the transition (3) of
parallel composition (see page 4):

If 〈P, σ〉
c

−→p2 〈P ′, σ′〉 and
stable(〈x, σ〉) and stableE(〈x, σ〉) (x = P, Q),

then 〈P ‖p1 Q, σ〉
c

−→p1×p2 〈par(P ′, Q, p1), σ′〉.

〈Q ‖p1 P, σ〉
c

−→(1−p1)×p2
〈par(Q,P ′, p1), σ′〉 .

This transition can be translated into Prolog clauses shown
as below. Every clause can represent the specific individual
case.

[S1, Sigma] —[′c′, Y] −→ [epsilon, Sigma1] ∧ stableB(S1, S2, Sigma)

[S1|X|S2, Sigma] —[′c′, X ∗ Y] −→ [S2, Sigma1]

[S1, Sigma] —[′c′, Y] −→ [epsilon, Sigma1] ∧ stableB(S1, S2, Sigma)

[S2|X|S1, Sigma] —[′c′, (1 − X) ∗ Y] −→ [S2, Sigma1]

[S1, Sigma] —[′c′, Y] −→ [S11, Sigma1] ∧

S11 ∼= epsilon ∧ stableB(S1, S2, Sigma)

[S1|X|S2, Sigma] —[′c′, X ∗ Y] −→ [S11|X|S2, Sigma1]

[S1, Sigma] —[′c′, Y] −→ [S11, Sigma1] ∧

S11 ∼= epsilon ∧ stableB(S1, S2, Sigma)

[S2|X|S1, Sigma] —[′c′, (1 − X) ∗ Y] −→ [S2|X|S11, Sigma1]

where,

stableB(P,Q, σ) =df stable(〈P, σ〉) ∧ stableE(〈P, σ〉) ∧

stable(〈Q,σ〉) ∧ stableE(〈Q,σ〉).

Here, we use “S1 |X |S2” to represent “S1 ‖X S2” and
“—[′c′, X] −→” to represent “

c
−→X” in the Prolog clauses.

Meanwhile, “epsilon” stands for the empty process ε and
∼= stands for 6=.

Next we use the example below to demonstrate how the sim-
ulator works. Consider the program (x := x + 1 ; x :=
x + 2) ‖0.4 (x := 2 ; x := 4). From the execution based
on the simulator, we know there are six execution sequences
leading the program to the terminating state, where the tran-
sitions contain their own specific probability 1.

? − track [(x := x + 1; x := x + 2) |0.4| (x := 2; x := 4), [x = 0]]. (1)
1 —[0, 0.4] −→ [x = x + 2 |0.4| x = 2; x = 4, [x = 1]] (2)
2 —[0, 0.4] −→ [x = 2; x = 4, [x = 3]] (3)
3 —[0, 1] −→ [x = 4, [x = 2]] (4)
4 —[0, 1] −→ [epsilon, [x = 4]] (5)

2 —[0, 0.6] −→ [x = x + 2 |0.4| x = 4, [x = 2]] (6)
3 —[0, 0.4] −→ [x = 4, [x = 4]] (7)
4 —[0, 1] −→ [epsilon, [x = 4]] (8)
3 —[0, 0.6] −→ [x = x + 2, [x = 4]] (9)
4 —[0, 1] −→ [epsilon, [x = 6]] (10)
1 —[0, 0.6] −→ [x = x + 1; x = x + 2 |0.4| x = 4, [x = 2]] (11)
2 —[0, 0.6] −→ [x = x + 1; x = x + 2, [x = 4]] (12)
3 —[0, 1] −→ [x = x + 2, [x = 5]] (13)
4 —[0, 1] −→ [epsilon, [x = 7]] (14)
2 —[0, 0.4] −→ [x = x + 2 |0.4| x = 4, [x = 3]] (15)
3 —[0, 0.4] −→ [x = 4, [x = 5]] (16)
4 —[0, 1] −→ [epsilon, [x = 4]] (17)
3 —[0, 0.6] −→ [x = x + 2, [x = 4]] (18)
4 —[0, 1] −→ [epsilon, [x = 6]] (19)

In total, there are six execution sequences leading the orig-
inal program to the terminating state, where each transition

1The notation [X,Y] in the displayed execution sequence indicates that
X is the duration of the transition and Y is the probability of the transi-
tion. Meanwhile, “track” is the command in the simulator to display the
execution sequence.

8

step contains probability either 0.4, 0.6 or 1. These six exe-
cution sequences are:

(1)(2)(3)(4)(5) (1)(2)(6)(7)(8)
(1)(2)(6)(9)(10) (1)(11)(12)(13)(14)
(1)(11)(15)(16)(17) (1)(11)(15)(18)(19)

where (i) stands for row i (given at the end of row i).

In summary, the simulator can display the execution se-
quences of programs based on the operational semantics. It
provides an animation tool for our operational semantics.
From various test examples including those above, the re-
sults displayed give us additional confidence concerning the
validity of the operational semantics.

7 Conclusion

In this paper we integrated probability with a timed
concurrent language. The probability was added into
non-deterministic choice, parallel composition and guarded
choice. Parallel processes communicate with each other via
shared variables. We formalized a structural operational
semantics for the language which incorporates time, con-
currency and probability. On top of the operational model,
an abstract bisimulation relation was defined and a rich set
of algebraic laws have been derived for program equiva-
lence. A prototype was also built for the animation of the
execution of probabilistic programs. As an immediate fu-
ture work, it would be interesting to work out a denota-
tional model and investigate the consistency between oper-
ational and denotational models. We would like to explore
an observation-oriented model as advocated in UTP [12],
which, we believe, would make the linking theory easier to
build.

References

[1] J. P. Bowen. Combining operational semantics, logic pro-
gramming and literate programming in the specification
and animation of the Verilog Hardware Description Lan-
guage. In Proc. IFM 2000: 2nd International Confer-
ence on Integrated Formal Methods, volume 1945 of Lec-
ture Notes in Computer Science, pages 277–296. Springer-
Verlag, November 2000.

[2] J. P. Bowen, He Jifeng, and Xu Qiwen. An animatable oper-
ational semantics of the Verilog Hardware Description Lan-
guage. In Proc. ICFEM 2000: 3rd IEEE International Con-
ference on Formal Engineering Methods, pages 199–207.
IEEE Computer Society Press, September 2000.

[3] W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, 5th edition, 2003.

[4] J. de Bakker and E. de Vink. Control Flow Semantics. The
MIT Press, 1996.

[5] J. den Hartog. Probabilistic Extensions of Semantic Models.
PhD thesis, Vrije University, The Netherlands, 2002.

[6] J. den Hartog and E. de Vink. Mixing up nondeteminism
and probability: A premliminary report. In Proc PROB-
MIV’98: Workshop on Probabilistic Methods in Verification,
June, 1998, volume 22 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1999.

[7] J. den Hartog and E. de Vink. Verifying probabilistic pro-
grams using a Hoare like logic. International Journal of
Foundations of Computer Science, 40(3):315–340, 2002.

[8] J. den Hartog, E. de Vink, and J. de Bakker. Metrix seman-
tics and full abstractness for action refinement and proba-
bilistic choice. In Proc MFCSIT: 1st Irish Conference on
the Mathematical Foundation of Computer Science and In-
formation Technology, July, 2000, volume 40 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2001.

[9] He Jifeng. Provably Correct Systems: Modelling of Com-
munication Languages and Design of Optimized Compil-
ers. The McGraw-Hill International Series in Software En-
gineering, 1994.

[10] He Jifeng, K. Seidel, and A. McIver. Probabilistic models
for the guarded command language. Science of Computer
Programming, 28(2-3):171–192, 1997.

[11] He Jifeng and Zhu Huibiao. Formalising Verilog. In Proc.
ICECS 2000: IEEE International Conference on Electron-
ics, Circuits and Systems, pages 412–415. IEEE Computer
Society Press, December 2000.

[12] C. A. R. Hoare and He Jifeng. Unifying Theories of Pro-
gramming. Prentice Hall International Series in Computer
Science, 1998.

[13] A. McIver and C. Morgan. Partial correctness for proba-
bilistic demonic programs. Theoretical Computer Science,
266(1-2):513–541, 2001.

[14] A. McIver and C. Morgan. Abstraction, Refinement and
Proof of Probability Systems. Monographs in Computer Sci-
ence. Springer, October 2004.

[15] A. McIver, C. Morgan, and K. Seidel. Probabilistic predi-
cate transformers. ACM Transactions on Programming Lan-
guages and Systems, 18(3):325–353, 1996.

[16] R. Milner. Communication and Concurrency. Prentice Hall
International Series in Computer Science, 1990.

[17] R. Milner. Communication and Mobile System: π-calculus.
Cambridge University Press, 1999.

[18] M. Núñez. Algebraic theory of probabilistic processes. The
Journal of Logic and Algebraic Programming, 56:117–177,
2003.

[19] M. Núñez and D. de Frutos-Escrig. Testing semantics
for probabilistic LOTOS. In Proc FORTE’95: IFIP TC6
Eighth International Conference on Formal Description
Techniques, Montreal, Canada, October 1995, volume 43 of
IFIP Conference Proceedings, pages 367–382. Chapman &
Hall, 1996.

[20] M. Núñez, D. de Frutos-Escrig, and L. F. L. Dı́az. Ac-
ceptance trees for probabilistic processes. In Proc CON-
CUR’95: 6th International Conference on Concurrency,
Philadelphia, PA, USA, August, 1995, volume 962 of Lec-
ture Notes in Computer Science. Springer, 1995.

[21] S. Park, F. Pfenning, and S. Thrun. A probabilistic language
based upon sampling functions. In Proc POPL 2005: 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 171–182. ACM, January 2005.

9

[22] G. D. Plotkin. A structural approach to operational seman-
tics. Technical Report 19, University of Aarhus, Denmark,
1981. Also published in The Journal of Logic and Algebraic
Programming, volumes 60/61:17–139, 2004.

[23] Zhu Huibiao. Linking the Semantics of a Multithreaded Dis-
crete Event Simulation Language. PhD thesis, London South
Bank University, UK, February 2005.

[24] Zhu Huibiao and He Jifeng. A semantics of Verilog us-
ing Duration Calculus. In Proc. International Conference
on Software: Theory and Practice, pages 421–432, August
2000.

Appendix

A. More Parallel Expansion Laws

(par-3-4) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)} and

Q = []k∈K{[qk] choicel∈Lk
(bkl&(xkl := ekl) Qkl)}

[][]m∈M{@cm Rm}

Then

P ‖r Q

= []i∈I{[r × pi] choicej∈Ji
(bij&(xij := eij)

par(Pij , Q, r))}

[][]k∈K{[(1 − r) × qk] choicel∈Lk
(bkl&(xkl := ekl)

par(P, Qkl, r)}

[][]m∈M{@ck par(P, Rm, r)}

(par-3-5) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)} and

Q = []l∈L{@cl Ql}[]{#1 R}

Then

P ‖r Q

= []i∈I{[pi] choicej∈Ji
(bij&(xij := eij)par(Pij , Q, r))}

[][]l∈L{@cl par(P, Ql, r)}

(par-3-9) Let P = []i∈I{@bi Pi} and

Q = []j∈J{@cj Qj}[]{#1 R}

Then
P ‖r Q

= []i∈I{@(bi ∧ ¬c) par(Pi, Q, r)}

[][]j∈J{@(cj ∧ ¬b) par(P, Qj , r)}

[][]i∈I∧j∈J{@(bi ∧ cj) par(Pi, Qj , r)}

[]{#1 par(P, R, r)}

where, b = ∨i∈I bi and c = ∨j∈J cj

(par-3-11) Let

P = []{#1 T} and

Q = []i∈I{[qi] choicej∈Ji
(bjk&(xij := eij) Qij)}

[][]k∈K{@ck Rk}

Then
P ‖r Q

= []i∈I{[qi] choicej∈Ji
(bij&(xij := eij)par(P, Qij , r))}

[][]k∈K{@ck par(P, Rk , r)}

(par-3-12) Let P = []{#1 T} and

Q = []i∈I{@bi Qi}[]{#1 R}

Then
P ‖r Q = []i∈I{@bi par(P, Qi, r)}[]{#1 par(T, R, r)}

(par-3-13) Let

P = []i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}

[][]k∈K{@bk Rk}

and

Q = []l∈L{[ql] choicem∈Ml
(clm&(xlm := elm) Plm)}

[][]n∈N{@cn Tn}

Then

P ‖r Q

= []i∈I{[r × pi] choicej∈Ji
(bij&(xij := eij)par(Pij , Q, r))}

[][]l∈L{[(1 − r) × ql] choicem∈Ml
(clm&(xlm := elm)

par(P, Qlm, r))}

[][]k∈K{@(bk ∧ ¬c) par(Rk, Q, r)}

[][]n∈N{@(cn ∧ ¬b) par(Rk, Q, r)}

[][]k∈K∧n∈N{@(bk ∧ cn) par(Rk , Qn, r)}

where, b = ∨k∈K bk and c = ∨n∈N cn

B. Proof of Theorem 3: ≈ is a congruence.

Assume P ≈ Q. We know for any state σ,
〈P, σ〉 ≈ 〈Q, σ〉. This means there exists a bisimula-
tion Sσ such that 〈P, σ〉 ≈ 〈Q, σ〉. Let S = ∪σ Sσ. We
know S is also a bisimulation.

(1) For the proof of P ; R ≈ Q ; R, let

S1,1 =df Id∪{ (〈P ; R, σ〉, 〈Q; R, σ〉) | 〈P, σ〉S 〈Q, σ〉 }

For the proof of R ; P ≈ R ; Q, let

S1,2 =df S∪{ (〈R; P, σ〉, 〈R; Q, σ〉) | 〈P, σ〉S 〈Q, σ〉 }

(2) For the proof of

if b then P else R ≈ if b then P else R,

let

S2,1 =df Id ∪ S∪

{ (〈if b then P else R, σ〉, 〈if b then Q else R, σ〉

| 〈P, σ〉S 〈Q, σ〉 },

For the proof of

if b then R else P ≈ if b then R else Q,

let

S2,2 =df Id ∪ S∪

{ (〈if b then R else P, σ〉, 〈if b then R else Q, σ〉)

10

| 〈P, σ〉S 〈Q, σ〉 }

(3) For the proof of while b do P ≈ while b do Q, let

S3

=df Id∪

{ (〈while bdoP, σ〉, 〈while bdoQ, σ〉)

| 〈P, σ〉S 〈Q, σ〉 }∪

{ (〈U ;while bdoP, σ〉, 〈V ;while bdoQ, σ〉)

| 〈P, σ〉S 〈Q, σ〉 ∧ 〈U, σ〉S 〈V, σ〉 }

(4) For the proof of P u R ≈ Q u R, let

S4,1 =df Id ∪ S ∪

{(〈P u R, σ〉, 〈Q u R, σ〉) | 〈P, σ〉S 〈Q, σ〉}

For the proof of R u P ≈ R u Q, let

S4,2 =df Id ∪ S ∪

{(〈R u P, σ〉, 〈R u Q, σ〉) | 〈P, σ〉S 〈Q, σ〉}

(5) For the proof of P up R ≈ Q up R, let

S5,1 =df Id ∪ S ∪

{(〈P up R, σ〉, 〈Q up R, σ〉) | 〈P, σ〉S 〈Q, σ〉}

For the proof of R up P ≈ R up Q, let

S5,2 =df Id ∪ S ∪

{(〈R up P, σ〉, 〈R up Q, σ〉) | 〈P, σ〉S 〈Q, σ〉}

(6) For the proof of the probabilistic guarded choice,
without loss of generality, we only consider the first type of
guarded choice here. Let

T1 = []{[p] choice(b&(x := e) P, G1), G2} and

T2 = []{[p] choice(b&(x := e) Q, G1), G2}

In order to consider the proof of T1 ≈ T2, let

S6

=df Id ∪ S ∪

{(〈T1, σ〉, 〈T2, σ〉) | 〈P, σ〉, S 〈Q, σ〉}

(7) For the proof of P ‖p R ≈ Q ‖p R, let

S7,1

=df Id ∪ S ∪

{(〈P ‖p R, σ〉, 〈Q ‖p R, σ〉) | 〈P, σ〉S〈Q, σ〉}

For the proof of R ‖p P ≈ R ‖p Q, let

S7,2

=df Id ∪ S ∪

{(〈R ‖p P, σ〉, 〈R ‖p P, σ〉) | 〈P, σ〉S〈Q, σ〉}

We can show that each Si,j (or Si)is a bisimulation. 2

C. Proof of Law (prob-3)

Now we give the proof for the algebraic law (prob-3)
(see page 6).

Let

S =df { (〈P up1 (Q up2 R), σ〉, 〈(P ux Q) uy R), σ〉)

| P, Q, R are programs ∧ σ ∈ Σ ∧ p1, p2 ∈ (0, 1) }

where, (1) x = p1/(p1 + p2 − p1 × p2),

y = p1 + p2 − p1 × p2

(2) Σ denaotes the set containing all the states.

Further, let T =df Id ∪ S ∪ S−1.

Now we need to prove that T is a bisimulation relation.

(1) From the transitions of up, we know that both
〈P up1 (Q up2 R), σ〉 and 〈(P ux Q) uy R), σ〉 cannot do
transition of type

τ
−→ and

v
−→. This indicates that we don’t

need to check the first item of bisimulation definition.

(2) Now we need to prove the item (2) of bisimulation
relation for T .

(a) If 〈P, σ〉
c

=⇒n′
1,p′

1
〈P ′, σ′〉,

then 〈P up1 (Q up2 R), σ〉
c

=⇒n′
1,p1×p′

1
〈P ′, σ′〉

and

〈(P ux Q) uy R, σ〉
c

=⇒n′
1,u1

〈P ′, σ′〉

where, u1 = y × x × p′1.

From x and y, we know u1 = p1 × p′1.

(b) If 〈Q, σ〉
c

=⇒n′
2,p′

2
〈Q′, σ′〉,

then 〈P up1 (Q up2 R), σ〉
c

=⇒n′
2,(1−p1)×p2×p′

2
〈P ′, σ′〉

and

〈(P ux Q) uy R, σ〉
c

=⇒n′
2,u2

〈P ′, σ′〉

where, u2 = y × (1 − x) × p′2.

From x and y, we know that u2 = (1− p1)× p2 × p′2

(c) If 〈R, σ〉
c

=⇒n′
3,p′

3
〈R′, σ′〉,

then

〈P up1 (Q up2 R), σ〉
c

=⇒n′
1,(1−p1)×(1−p2)×p′

3
〈P ′, σ′〉

and

〈(P ux Q) uy R, σ〉
c

=⇒n′
3,u3

〈P ′, σ′〉

where, u3 = (1 − y) × p′3.

From x and y, we know u3 = (1−p1)×(1−p2)×p′3.

The above analysis leads to the satisfactory of the item
(2) of bisimulation definition for the pair of configurations
(〈P up1 (Q up2 R), σ〉, 〈(P ux Q) uy R), σ〉).

(3) The proof of item (3) of bisimulation relation for T is
similar to the above proof of item (2). 2

11

