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Abstract. In design of dependable software for real-time embedded sys-
tems, time analysis is an important but challenging problem due in part
to the randomicity and nondeterminism of interrupt handling behaviors.
Time properties are generally determined by the behavior of the main
program and the interrupt handling programs. In this paper, we present
a small but expressive language for interrupt-driven programs and pro-
pose a timed operational semantics for it which can be used to explore
various time properties. A number of algebraic laws for the computa-
tion properties that underlie the language are established on top of the
proposed operational semantics. We depict a number of important time
properties and illustrate them using the operational semantics via a small
case study.

Keywords: time, interrupt, operational semantics.

1 Introduction

With the rapid development of the computer industry, multitudinous operat-
ing systems spring up in the past forty years. An operating system (OS), as a
particular software running on computers, not only manages the computer hard-
ware, but also provides the common platform for efficient execution of various
application software. It acts as a bridge between the computer hardware and
application programs. A real-time OS is a multitasking OS that aims at exe-
cuting real-time applications. This kind of OS involves both logical correctness
and timeliness. Usually the interrupt mechanism is introduced as a technique
to support multi-threads, device drivers and OS in real-time computing, which
enables OS to handle time-sharing tasks and concurrency.

An interrupt-driven system indicates that the OS can schedule the tasks’ exe-
cution and perform reasonable allocation of time and other resources in the form
of hardware interrupt or software interrupt. The interrupts are usually imple-
mented in terms of asynchronous signals and synchronous events. The generation
of interrupt requests (signals/events) is usually random and nondeterministic,
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which make interrupt behaviors extremely difficult to reason about in the devel-
opment of OS.

The analysis and verification of interrupt therefore becomes the focus of at-
tention in both industry and academia. There have been proposals suggesting
that interrupts can be regarded as threads and may be verified like threads using
some similar verification methods [2–5]. Some researchers have attempted to ap-
ply different formal methods to the interrupt programs [6–8]. In an earlier work,
we have developed a formal model of interrupt programs from a probabilistic
perspective, designed the probabilistic operational semantics for interrupt pro-
gram to capture the potential properties, and specified the time constraint of
interrupt programs [1].

Most real-time operating systems require responsive interrupt handling to
meet the real-time requirements. As this kind of OS has been widely used in our
society, the correctness of timing behavior in this kind of OS becomes increasingly
important. There has been work reported on analyzing the time properties of
interrupt-driven programs. Jens Palsberg et al. have performed a series of studies
on interrupt-driven Z86-based software. They have developed a tool to analyze
interrupt latencies, stack sizes, deadline as well as verified fundamental safety
and liveness properties [9–12]. John Regehra has proposed a set of design rules for
interrupts in real-time and embedded software, where he believes it is necessary
to consider the stack overflow, interrupt overload and real-time analysis problems
[13].

There has also been work reported to improve the performance of the interrupt
mechanism, in order to make real-time embedded operating systems to provide
correct and timely services in the presence of constrained resources. Eleiderma-
cher suggests that the most important characteristic that makes an operating
system a real-time system is the ability to handle interrupts quickly. He pro-
poses a few rules to minimize interrupt response time in worst case [14]. Jinkyu
et al. [15] suggest a novel scheme to minimize the performance degradation in
embedded operating systems with real-time support, where they present trans-
parent and selective real-time interrupt services which transparently monitor the
system and postpone interrupt handling that are not relevant to real-time tasks.

With the development of various formal methods and emergence of the corre-
sponding tools, such as automata theory, B method, Z notation, CSP, VDM, etc.,
formal methods can be applied with the assistance of automated and human-
assisted tools. This makes the analysis and verification of programs more and
more viable. In this paper, we develop a formal model of interrupt-driven pro-
grams from a timing perspective, in order to analyze time properties during
the development of such programs. We propose an interrupt-driven program-
ming language and define a timed operational semantics for interrupt-driven
programs written in this language and explore various time properties using the
semantics. The main contributions of our work includes:

• Interrupt-driven Programs. We present a language of the interrupt-
driven programs including some interrupt operators like enable/disable/set.
In our model, the system can enable or disable interrupts to decide whether
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the system should enable/disable the interrupt mechanism which is to in-
teract with the environment via interrupt handling. Moreover, the system
can request any interrupt itself by setting a interrupt signal which help the
system schedules multiple tasks.

• Timed Operational Semantics. Time is introduced into operational se-
mantics to specify the meanings of the interrupt-driven programs. We pro-
vide two ways to handle the interrupt requests. One is an ordinary way that
the received interrupt requests are always handled, and the other is a safe
way that the system may ignore some interrupts so as to make sure that the
program always meet the deadline. Meanwhile, the algebraic laws [16] that
underlie the language are established in terms of the suggested operational
semantics.

• Time Properties. We depict a number of important time properties which
are essential to the real-time embedded operating systems in our frame-
work: interrupt response time, interrupt activated time, interrupt overload
and deadline. The analysis of four properties will help the analysis of the
real-time embedded OS. Based on these, we give an example to present the
feasibility and effectiveness of our approach.

The remainder of the paper is organized as follows: Section 2 introduces the
interrupt handling mechanism which we discuss about in this paper and pro-
vides an approach to describing the program’s operating environment. Section
3 defines the language which has two parts, i.e., the main program and the in-
terrupt handlers. Section 4 is devoted to a timed operational semantics for our
interrupt-driven language. Section 5 lists some interesting algebra laws for the
computation properties of our programs. The time properties of interrupt pro-
grams are specified and a corresponding case study is presented in Section 6,
followed by our concluding remarks in Section 7.

2 Overview of the Interrupt Mechanism

In this section, we depict the interrupt mechanism in our model, which has been
used in some real-time embedded operating systems. The interrupt mechanism
provides an efficient way for an operating system to interact with and react to
its operating environment. Such a mechanism is illustrated in Figure 1. In our
model, the interrupts are implemented in terms of signals which can be produced
by either the software program or the hardware device; in other words, by ei-
ther the system or the environment. Firstly, when an interrupt is received, the
program that is currently running is suspended and its state is saved. Secondly,
the code that has already been associated with the interrupt starts to run. Such
code can be found in the interrupt vector. At last, the control returns to where
the interrupt has occurred and all the preserved states should be returned as if
the interrupt has never happened.
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Fig. 1. The Mechanism of Interrupt

Based on the interrupt mechanism, we give an informal introduction about
the system and the environment in our model in what follows.

2.1 System

In our model, the system is divided into two parts, i.e., the main program and
the interrupt handlers. The main program provides basic services and can be
expressed as a particular sequential program. The interrupt handlers interact
with the environment to make sure the system can provide correct and timely
services. Although they both are programs from a coding perspective, they still
have their own characteristics due to different duties.

The main program’s characteristics:

– A real-time embedded operating system usually supports multiple tasks, and
it always has a scheduling strategy to manage the tasks and to locate the
limited resources. In our model, we assume there is one processor and only
one task is running at all time. So the system can be described as a sequential
program ( “the main program” called here).

– The main program can enable or disable the interrupt handling. An inter-
rupt signal is used to denote an interrupt request. Only when the inter-
rupt handling is enabled, the system can receive interrupt signals which are
then handled by the corresponding interrupt handlers in the order in which
they were received. On the other hand, if the interrupt handling is disabled,
the system ignores all interrupt signals received during the disabled period.
Moreover, when the interrupt handling option is switched from enabled to
disabled, the accumulated interrupt requests are cleared.

– The main program prevents itself from continuously being interrupted by re-
quiring itself to step forward once returning back from an interrupt handler.
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The interrupt handlers’ characteristics:

– An operating system usually tries to ensure that the time spent on interrupt-
handling is kept to a minimum. It saves the state of the interrupted program
when the context is switched to that of an interrupt handler. In our model,
interrupt handlers may require a little handling time but they will not modify
the data states of their interrupted programs. Moreover, for simplicity, we
assume no priorities for interrupt handlers here; all interrupt requests are
therefore dealt with in the order they were received. It is acceptable for the
system to ignore some interrupt signals in order to meet its deadline.

– Both the system and environment can request interrupts by issuing interrupt
signals. In our model, the system may issue any interrupt signal in any
place wherever it needs. Meanwhile, the environment may also produce any
interrupt signal unexpectedly at any time. As we mentioned above, only
when the interrupt handling is enabled, interrupt requests can be received
and handled as soon as possible (but not necessarily immediately). In our
model, we assume that there would not be two or more interrupt signals
happened at the same time (such a scenario rarely happens in fact).

– In our model, the system forbids interrupt nesting. But during the execution
of an interrupt handler, the system can still receive and record interrupt
requests.

2.2 Environment

The correctness of an real-time embedded operating system depends not only on
its logical correctness but also its correct response to the operating environment.
For better interaction with the environment, the system must respond the inter-
rupts timely on one hand, and the main program of the system must meet its
time deadline on the other hand. So analyzing such kind of systems must take
into account the variable environment.

In our model, we assume there are only a finite number of different kinds
of interrupt signals, and the environment may produce different sequences of
interrupt requests made up of these signals. For a given sequence, we can analyze
the behavior of the system in the corresponding environment and investigate
its time properties. To have a better analysis of the behavior of the system in
a specific environment, we assume that each signal in the sequence is labeled
with its arrival time. Despite of the randomicity and nondeterminism of the
interrupts, we would still expect that any user-given interrupt sequence can
reflect the real scenarios to a large extent, so that our analysis can reveal more
accurate performance of the system in such reasonable situations.

3 The Language

In this section, we present our language to specify interrupt-driven programs,
which includes some ordinary program constructs as well as three new constructs
related to interrupt handling, namely enable, disable and set. We also define a
function to estimate the execution time of program which supports the time
analysis of interrupt-driven programs.
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3.1 Syntax

In our model, a system is composed of a main program and a set of interrupt
handlers. We use the notation Sys ::= [M, I] to describe a system, where M
and I denotes the main program and the set of interrupt handlers respectively.
The main program can be interrupted by interrupt signals corresponding to
any of the interrupt handlers in the interrupt set I. As mentioned earlier, the
interrupt nesting is forbidden in our model. That is, an interrupt handler cannot
be interrupted by other handlers. The abstract syntax of the language is defined
in the following.

M ::= enable | disable | set(is) | P | M ;M |
M � b � M | [b ∗M ]n

(is → P ) ∈ I

When the system starts, the interrupts are usually enabled so that the system
can interact with the environment timely. After that, the main program can
enable or disable interrupts. The main program itself can also set an interrupt
signal is via set(is) to take the initiative to request an interrupt. The notion
(is → P ) ∈ I denotes an interrupt handler P identified by the interrupt signal
is. Note that P , which appears in both the main program and interrupt handlers
above, stands for an ordinary program and is defined in what follows.

P ::= skip|x := e|P ;P |P � b � P |[b ∗ P ]n|atomic(P )

skip is a program that does not change anything. x := e assigns the value of
e to the variable x. The programs P ;Q denotes the sequential composition of
P and Q (similarly for M1;M2). The program P � b � Q behaves like P if the
boolean expression b is true, or Q otherwise (similarly for M1 � b � M2). The
iteration [b ∗ P ]n iterates P whenever b is true. For simplicity, we assume the
number of iterations is statically known and is given by the annotation n. The
assignment x := e and the evaluation of boolean expression b are atomic, that is,
their computation cannot be interrupted. Informally atomic(P ) behaves like P
except that any interrupts occurred would not dealt with during the execution.
However, it is not equal to (disable;P ; enable). The difference lies in that the
system can still receive interrupt requests during the execution of atomic(P )
while (disable;P ; enable) will make the system to ignore all interrupt requests
including previously received ones.

3.2 Workload Function

In this subsection, we give a definition of workload function f : M × σ → N to
estimate the execution time of program. The time that elapses during the pro-
gram’s execution is interrelated with the program’s structure and data states.
If the initial state of program is definite, then the finial state is definite. M is
program while σ stands for the program’s current data states. And N is natural
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number denoting time. The user can define the execution time of each program by
f , here we assume that the interrupt operations enable, disable and set don’t cost
any time and all of them can be considered as instantaneous operation following
the previous ones, where f(enable, σ) = 0, f(disable, σ) = 0 and f(set(is), σ) = 0.
In particular, we define skip won’t cost time f(skip, σ) = 0. Moreover, we assume
the computation of expression e or b won’t cost time as they are prepared to
evaluate their values in the former operations.

Our group has developed a virtual machine called xBVM which we introduced
in [17]. This machine which based on xBIL language can be used to execute the
xBIL code and calculate the program’s execution time. With this example,
we can assure that the workload function is feasible and practical. Absolutely,
the user can use any feasible machine to help estimate the program’s execution
time, which makes better use of our approach for analyzing the time properties
of programs.

Property 1. For a sequential program P ;Q, its execution time is the sum of
the time cost by P and Q. The program P starts with initial state σ and Q
performs at the state passed from P which is a definite state P (σ).

P-1 f(P ;Q, σ) = f(P, σ) + f(Q,P (σ))

Property 2. This function distributes over conditional operator.

P-2 f(P � b � Q, σ) = f(P, σ) � b(σ) � f(Q, σ)

Property 3. The atomic(P ) costs the same time as program P .

P-3 f(atomic(P ), σ) = f(P, σ)

Property 4. The execution time of iteration program is interrelated with the
boolean expression and loop times.

P-4 f([b ∗ P ]n, σ) = f(P ; [b ∗ P ]n−1, σ) � b(σ) � f(skip, σ)

4 Operational Semantics

In the section, we present an operational semantics for the interrupt-driven pro-
gram. The operational semantics specifies how the effect of a computation is
produced. It is given in terms of transitions between configuration. The configu-
ration is defined as a tuple 〈M,σ, t, i, q〉 consisting of the following components:

– M describes the program to be executed. We can use workload function to
estimate the execution time of this program.

– A state σ ∈ Σ : V ars → N which is a mapping of the given finite set V ars
of variables to the set N of natural numbers. The data states of the main
program and the interrupt handlers have no intersection.

– t ∈ N denotes the time spent by the running program.
– The identifer i indicates the running state of the system. It has three values,

i.e., 0, 1, and 2. 0 stands for the interrupts are enabled and the main program
can be interrupted at any time. 1 denotes that the interrupts are enabled,
but the main program cannot be interrupted until progressing one step. And
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it makes there won’t be more than one interrupt handled in the same place.
At last, 2 stands for the interrupts are disabled.

– We employ interrupt signals queue q to record the received signals.

We give a few of the operational rules for the interrupt-driven program as follows.
In our framework, each program has a deadline (denoted by d) which is given in
specification to help analyze the behavior and time properties of program. For
all the transitions, we assume they satisfy a precondition that a good program
M to be executed will always meet its deadline, so there exists such a invariance
f(M,σ) ≤ d during the program normally running. Moreover, the system con-
tains a set of interrupt handlers, and the arrow→I means the transition happens
within the interrupt set I.

Nontermination
We employ 〈M,σ, t, i, q〉 where t > d to indicate the nontermination of the
program. The notation t > d means program M has already missed its deadline.

Assignment

〈x := e, σ, t, 0, nil〉 →I 〈skip, σ[e/x], t′, 0, q〉
〈x := e, σ, t, 1, q〉 →I 〈skip, σ[e/x], t′, 0, q′〉
〈x := e, σ, t, 2, nil〉 →I 〈skip, σ[e/x], t′, 2, nil〉

where t′ = t+ f(x := e, σ)

The assignment x := e is an atomic action which cannot be interrupted. We
write σ[e/x] for the state that agrees with σ except at x, which is mapped to
σ(e). The σ(e) means the natural number value of e in σ.

There are three kinds of transitions for assignment. Firstly, system is in 0
state, the assignment can execute only when q = nil, otherwise the interrupt in
q will be handled before the assignment running. During its execution, the envi-
ronment may produce interrupt signal, where nil may change into q. Secondly,
system is in 1 state which means the system returns from handling an interrupt
just now, the assignment will always execute no matter whether there is any
more interrupt request in q or not. And q may extend to q′ as the environment
may issue interrupt signal. The assignment is considered as one step, the system
can turn its state from 1 to 0 after it executed. At last, when the system is
in 2 state, there shouldn’t be any interrupt. When the assignment finishes, the
execution time t adds the time consumed by itself.

Sequential Composition

〈M1, σ, t, i, q〉 →I 〈skip, σ′, t′, i′, q′〉
〈M1;M2, σ, t, i, q〉 →I 〈M2, σ

′, t′, i′, q′〉
〈M1, σ, t, i, q〉 →I 〈M ′

1, σ
′, t′, i′, q′〉

〈M1;M2, σ, t, i, q〉 →I 〈M ′
1;M2, σ

′, t′, i′, q′〉
The sequential composition of two programs M1;M2 is executed by running M1

first and running M2 until M1 terminates. If M1 is unable to terminate, so is
M1;M2.
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Choice
b(σ) = true

〈M1 � b � M2, σ, t, i, q〉 →I 〈M1, σ, t, i, q〉
b(σ) = false

〈M1 � b � M2, σ, t, i, q〉 →I 〈M2, σ, t, i, q〉
The notation b(σ) is defined for the boolean value of b in σ, and the evaluation of
expression b cannot be interrupted. In our framework, we assume b’s computation
won’t cost time as it is prepared to evaluate true or false in the former operations.
The program behaves like M1 if the boolean expression b is true, or M2 if false.

Iteration
b(σ) = true ∧ n ≥ 1

〈[b ∗M ]n, σ, t, i, q〉 →I 〈M ; [b ∗M ]n−1, σ, t, i, q〉
b(σ) = false ∨ n = 0

〈[b ∗M ]n, σ, t, i, q〉 →I 〈skip, σ, t, i, q〉
The iteration is similar with the choice program that the interrupt cannot hap-
pen during the evaluation of b. The real-time embedded system usually forbids
infinite iteration, especially the interrupt handlers, so it is always limited to a
number of cycles.

Atomic Action

〈atomic(skip), σ, t, i, t〉 →I 〈skip, σ, t, i, q〉
〈P, σ, t, 0, nil〉 →I 〈P ′, σ′, t′, 0, q〉

〈atomic(P ), σ, t, 0, nil〉 →I 〈atomic(P ′), σ′, t′, 0, q〉
〈P, σ, t, 1, q〉 →I 〈P ′, σ′, t′, 0, q′〉

〈atomic(P ), σ, t, 1, q〉 →I 〈atomic(P ′), σ′, t′, 0, q′〉
〈P, σ, t, 2, nil〉 →I 〈P ′, σ′, t′, 2, nil〉

〈atomic(P ), σ, t, 2, nil〉 →I 〈atomic(P ′), σ′, t′, 2, nil〉
where t′ = t+ (f(P, σ)− f(P ′, σ′))

The user can define atomic action to ensure a series of actions complete with-
out interrupted. The behavior of atomic(P ) is the same as program P without
interrupt. It has three kinds of transitions like the assignment.

Enable/Disable Interrupt

〈enable, σ, t, i, q〉 →I 〈skip, σ, t, 0, q〉
〈disable, σ, t, i, q〉 →I 〈skip, σ, t, 2, nil〉

The statement enable is an atomic action which can change the system’ state
into 0. So that the program can receive the interrupt request and handle the
interrupt as soon as possible. The disable is also an atomic action and it makes
the system’s state turn into 2 and empties the interrupt signals queue q. Once
the system is disabled, the received and the new interrupt requests are all be
ignored. In our model, we mentioned both of the two operations are considered
to take no time.
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Request Interrupt

〈set(is), σ, t, 0, nil〉 →I 〈skip, σ, t, 0, is〉
〈set(is), σ, t, 1, q〉 →I 〈skip, σ, t, 0, q�is〉
〈set(is), σ, t, 2, nil〉 →I 〈skip, σ, t, 2, nil〉

The main program can request any interrupt actively. The set(is) denotes that
the main program requests the is interrupt. set(is) is an atomic action and it has
the same transitions as assignment except that it won’t cost time. Only when the
interrupts enabled, the request signal will be accepted and put into the queue
in occurred order.

Handle Interrupt

head(q) = is ∧ 〈I(is), σI , t, 2, nil〉 →I 〈skip, σ′
I , t

′, 2, nil〉
〈M,σ, t, 0, q〉 →I 〈M,σ, t′, 1, q′〉

where t′ = t+ f(I(is), σI)

As we mentioned before, there is no intersection of data states between the main
program and interrupt handlers, where σ ∩ σI = ∅. When the interrupts can
be executed, they are always handled in First In First Out order. So the head
signal is got out of queue and the corresponding interrupt handler executes. The
interrupt handler cannot be interrupted, so its state is set to 2 and q is nil.

After the interrupt terminates, the time t of the main program should also
records the time spent by the interrupt. And the system’state changes from 0 to
1 to denote the main program cannot be interrupted again in the same place.
The environment may produce interrupt signal during the execution of interrupt
handler, so q′=is�q or q′=is�q�q′′. If the interrupt consumes so much time that
make the main program miss the deadline, the deadline is negative.

Handle Interrupt Safely
In our model, we also provides a mechanism that can make the program always
meet the deadline. Before the ready interrupt handler running, the system will
evaluate whether there is enough time for the main program’s execution. We use
the arrow

s−→I to denote the transition is based on the safe mechanism.

head(q) = is ∧ f(I(is), σI) ≤ T∧ 〈I(is), σI , t, 2, nil〉 s−→I 〈skip, σ′
I , t

′, 2, nil〉
〈M,σ, t, 0, q〉 s−→I 〈M,σ, t′, 1, q′〉

where T = d− f(M,σ) and t′ = t+ f(I(is), σI)

head(q) = is ∧ f(I(is), σI) > T

〈M,σ, t, 0, q〉 s−→I 〈M,σ, t, 0, q′〉
where T = d− f(M,σ)

The safe transition is the same as the normal transition when there is enough
time for the interrupt to be executed, in other words, the inequality f(I(is), σI) ≤
(d− f(M,σ)) establishes. If there isn’t enough time and the system adopts safe
transition, the system may reject the interrupt request to make the main program
meet its deadline. The states of the system remain the same except removing
the ignored interrupt signal out of q.
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We present two equivalence relations in our framework like bisimulation [18,
19]. We assume two programs M1 and M2 with the same interrupt set I execute
in the same environment, and they have same initial states except deadline. For-
mally, let →1

I mean one step and →∗
I mean 0 or more steps under the operational

semantics.

Definition 1. We say an equivalence relation =t over the interrupt-driven pro-
grams. M1 =t M2 iff for any state σ,

if 〈M1, σ, t1, 2, nil〉 →∗
I 〈skip, σ′

1, t
′
1, 2, nil〉 and

〈M2, σ, t2, 2, nil〉 →∗
I 〈skip, σ′

2, t
′
2, 2, nil〉

then (σ′
1 = σ′

2) ∧ (t′1 − t1 = t′2 − t2)

When discussing about =t-equivalence, we assume the interrupt mechanism is
disabled to analyze the main program’s own behavior. When the two programs
terminate, their data states are still same and they consume same execution
time.

Definition 2. We define an equivalence relation R over configurations as a

I -bisimulation if 〈M1, σ, t, i, q〉R 〈M2, σ, t, i, q〉 implies,

if 〈M1, σ, t, i, q〉 →1
I 〈M ′

1, σ
′
1, t

′
1, i

′
1, q

′
1〉

then 〈M2, σ, t, i, q〉 →∗
I 〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉 and

〈M ′
1, σ

′
1, t

′
1, i

′
1, q

′
1〉R〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉

if 〈M2, σ, t, i, q〉 →1
I 〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉

then 〈M1, σ, t, i, q〉 →∗
I 〈M ′

1, σ
′
1, t

′
1, i

′
1, q

′
1〉 and

〈M ′
1, σ

′
1, t

′
1, i

′
1, q

′
1〉R〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉

Definition 3. (a) Two configurations C1 and C2 are I -bisimilar, written as
C1 =I C2, if there exists a I -bisimulation R such that C1RC2. (b) Two pro-
grams M1 and M2 are I -bisimilar, denoted as M1 =I M2, if for any states σ, t,
i and q, 〈M1, σ, t, i, q〉R〈M2, σ, t, i, q〉.

According to the definition of operational semantics and the two kinds of equiv-
alences, we can educe if =I -bisimilar establishes, then =t-equivalence must es-
tablish. Define if M1 =I M2 then M1 =t M2.

Example. (x := x) �=t skip since they may have different execution time. More-
over, (disable x := 1 enable) =t (x := 1) but (disable x := 1 enable) �=I (x := 1).
Although they cost same time, the latter can receive interrupt quest. So they
may have different system state and interrupt queue.

5 Algebraic Laws

Program properties can be expressed as algebraic laws (equations or inequa-
tions), which can be verified by using the formalized semantics. We explore a
set of important and useful algebraic laws which hold for the interrupt-driven
program in this section. Proofs that the laws are sound with respect to the
operational semantics are straightforward and have been omitted due to space
limit.
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Algebra is well-suited for direct use by engineers in symbolic calculation of
parameters and the structure of an optimal design. Algebraic proof by term
rewriting is the most promising way in which computers can assist in the process
of reliable design [16]. From the point of view of language design it is desirable
to impose as few constraints as possible on the programming constructs, and
make the laws as widely applicable as possible. Here we will confine ourselves to
those laws involving the introduced operators.

Atomic Statement

Atomic statement is idempotent.

A-1 atomic(P ) =I atomic2(P ).

Atomic statement distributes over conditional choice.

A-2 atomic(P � b � Q) =I atomic(P ) � b � atomic(Q).

Interrupt Operation

The programs enable and disable are idempotent.

I-1 enable;P =I enable; enable;P

I-2 disable;P =I disable; disable;P

Program disable makes the following program set(is) no sense.

I-3 disable; set(is) =I disable

The atomic operator between disable and enable behaves no sense.

I-4 disable; atomic(P ); enable =I disable;P ; enable.

6 Time Properties and a Case Study

Real-time embedded operating systems support real-time applications; there-
fore, the designers of such systems should consider their real-time features. The
correctness of this kind of operating systems involves both the logical correctness
and timeliness. In this section, we will analyze some time properties about our
interrupt-driven programs listed as below.

Interrupt Response Time. The system usually takes time to respond to an
interrupt request. This is the time between the arrival of the interrupt signal and
the start of the execution of the corresponding interrupt handler. In order for
the system to have better interaction with the environment, the system should
handle the interrupt request timely. So we think the analysis of interrupt-driven
programs should take this property into account. The system requirement usually
give worst-case upper bounds on interrupt response time. In our model, we use
σw to denote the worst case response time of the analyzed program.

Interrupt-Activated Time. This time denotes the total period when the in-
terrupts are enabled. The system allows the main program to enable or disable
interrupts. The system requirement usually extends interrupt activated time to
make sure that the system can interact with the environment promptly. So it is
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necessary to consider the interrupt activated time in a specified environment to
evaluate the system’s real-time behaviors.

Interrupt Overload. If there come too many interrupt requests, the system
may not have enough time to handle all of them, or it may miss its deadline.
Interrupt overload is a problem to consider in real-time analysis. The designer
usually adopts a few strategies to help make interrupt overload less likely or
impossible in real-time embedded operating systems. For example, they may
keep the execution time of interrupt handlers short or bound the arrival rates
of interrupt signals. Given its importance, we shall also analyze this property of
the system in a given environment.

Deadline. A reliable real-time embedded operating system should be such a
system that it meets its deadline in most cases but may miss its deadline very
rarely (the probability for such cases is so low that it can be tolerated). There
may be a deadline for every program, but we assume the interrupt handler always
meet its deadline in our model. Here we just consider whether the main program
meet the deadline or not in a variable environment.

The Case Study
To carry out the study, we can define a specific environment which contains a
sequence of interrupt signals to happen as well as their happening time. For
instance, the user can assume that there are three kinds of interrupts in the
system, denoted as is1, is2, and is3. For convenience, we assume each of the in-
terrupt handlers costs the same time in different data states, and we assume that
f(I(is1), σI) = τ , f(I(is2), σI) = 2τ and f(I(is3), σI) = 4τ , where τ indicates
the time unit. We also assume that the environment may produce a sequence
such as 〈is2τ1 , is3τ1 , is4τ2 〉 or another sequence: 〈isτ1 , is3τ2 , is5τ3 〉, e.g., is2τ1 means at
the second time unit, the environment will produce the interrupt signal is1. We
can analyze the behavior and the time properties about the system in such given
environments.

A main program P whose deadline is 10τ is defined as below, and meanwhile
the interrupts are enabled at the very beginning. We define the execution time
for the program begins in a unique initial data state σ by workload function f .
Here we assume σ = σw that the analyzed program is running in the worst case
scenario. We use superscripts like (n) to label each operation for simplicity.

P =df x := 1(1); y := 2(2);
atomic(x := x+ 1; y := y + 1)(3);

z := x+ y(4); disable(5);x := x− 2(6);

f(x := 1, σ) = τ
f(y := 2, σ1) = τ where σ1 = x := 1(σ)
f(x := x+ 1, σ2) = τ where σ2 = y := 2(σ1)
f(y := y + 1, σ3) = τ where σ3 = x := x+ 1(σ2)
f(z := x+ y, σ4) = τ where σ4 = y := y + 1(σ3)

f(x := x− 2, σ5) = τ where σ5 = z := x+ y; disable(σ4)
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Case 1: The program P executes in such an interrupt sequence: 〈is2τ1 , is3τ1 , is4τ2 〉.
The table below has four parts: P presents the last executed program, t denotes
the execution time of program, i indicates the system’s state, and q certainly
denotes the interrupt signal queue. Take the row 2 for example, when x := 1
finishes running, it costs one time unit τ . The system state is 0 and the interrupt
queue has no interrupt signal.

Table 1. Steps shown in the case 1

P t i q

1 0 0 nil

2 1 τ 0 nil

3 2 2τ 0 is1
4 I(is1) 3τ 1 is1
5 3 5τ 0 is�1 is2
6 I(is1) 6τ 1 is2
7 4,5 7τ 2 nil

8 6 8τ 2 nil

We analyze four properties we mentioned above in case 1. The average of the
interrupt response time is τ , where (0 + 2τ)/2 = τ that the first two interrupt
requests are handled. The interrupt activated time is the sum of time when the
system in 0 and 1 states, and it is 6τ in case 1. During the whole execution
of program P , there comes three interrupts but only two are handled before it
finishes. At last, t = 8τ < d indicates P meet its deadline.
Case 2a: The program P executes in another interrupt sequence: 〈isτ1 , is3τ2 , is5τ3 〉.

Table 2. Steps shown in the case 2a

P t i q

1 0 0 nil

2 1 τ 0 is1
3 I(is1) 2τ 1 nil

4 2 3τ 0 is2
5 I(is2) 5τ 1 is3
6 3 7τ 0 is3
7 I(is3) 11τ 1 nil

Case 2b: According to Case 2a, we get program P miss the deadline where
t = 11τ > d at last. Here we analyze the behavior of the system by following
the safe interrupt handler transition rules. In this case, the is3 interrupt which
costs so much time won’t be handled so P would meet the deadline.

We compare the performance of program P in the same environment but
following different transition rules, namely, an ordinary rule in case 2a, and a
safe rule in case 2b. The interrupt response time is respectively 2/3τ and 0.



Investigating Time Properties of Interrupt-Driven Programs 145

Table 3. Steps shown in the case 2b

P d i q

1 0 0 nil

2 1 τ 0 is1
3 I(is1) 2τ 1 nil

4 2 3τ 0 is2
5 I(is2) 5τ 1 is3
6 3 7τ 0 is3
7 4,5 8τ 2 nil

8 6 9τ 2 nil

The interrupt activated time is respectively 11τ and 7τ . Three interrupts are all
handled in case 2a, while only the first two interrupts are handled in case 2b.
Due to the is3 interrupt executes or not, P misses the deadline in case 2a, but
meets the deadline in case 2b.

According to the examples above, it’s convenient for the user to analyze the
time properties of the interrupt-driven program through the language and the
timed operational semantics in our framework.

7 Conclusion and Future Work

It remains a challenging problem to analyze time properties for programs in the
presence of interrupts. In this paper we make a small step forward in tackling
this problem. We provide a small interrupt-driven programming language and
propose a timed operational semantics for it. To simplify the analysis, we consider
only finite programs where the number of iterations are statically known. We
make use of a workload function to estimate the execution time of programs. We
also have some preliminary discussions on algebraic laws based on the proposed
operational semantics. Several time properties for such programs are introduced
and analyzed under several scenarios with the help of the operational semantics.

As for future work, we will extend the model to cover more advanced issues,
such as interrupt priorities, interrupt nesting, enabling/disabling some interrupt
services (but not all). We shall also try to provide a formal specification for the
time properties and offer a more formal analysis as to how good a programming
model would behave in terms of those time properties.
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