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Abstract

We present a new (size-)polymorphic type system (for anabbje
oriented language) that characterizes the sizes of datatstes
and the amount of heap and stack memory required to suctigssfu
execute methods that operate on these data structuresokmoe
nents of this type system include type assertions that uséaijc
Presburger arithmetic expressions to capture data steustmes,
the effect of methods on the sizes of the data structureghbgt
manipulate, and the amount of memory that methods allocate a
deallocate. For each method, it can provide expressiongdba-
servatively) capture the amount of memory required to exethe
method as a function of the sizes of the method’s inputs. afet\ys
guarantee is that the method will never attempt to use moneane
than its type expressions specify.

We have implemented a type checker to verify memory us-
ages of object-oriented programs, and also an inferen¢ersyt®
predict on memory usages. Our experience is that the type sys
tem can effectively capture memory bounds of object-oeiémtro-
grams.

1. Introduction

Memory management is a key concern for many applications.
Over the years researchers have developed a range of meranry m
agement approaches; examples include explicit allocatoideal-
location, copying garbage collection, and region-basechang al-
location. A key safety concern in every approach is the pidggi
of dangling references that allow the program to unsafebess
memory that has been deallocated. Some approaches (gadiage
lection) rule out this possiblity altogether; for othersearchers
have developed type systems that ensure that well-typeggns
either have no dangling references or never use dangliegeretes
to unsafely access deallocated memory. Examples inclugeri
type systems [17, 19, 16] and type systems that eliminatpdke
sibility of dangling references in programs that use regiased
memory allocation [33, 20, 5, 12].
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In this paper we address a complementary aspect of memory
safety : the possibility that the program may attempt tocaite
more memory than the execution platform can give it. We priese
a (size-)polymorphic type system that characterizes theuatnof
memory required to execute each program component. The key
components of this type system include:

e Data Structure Sizes and Size ConstraintsThe type of each
data structure includes parameters that characterizeiziés s
properties, which are expressed in terms of the sizes of data
structures that it contains. In many cases the sizes of thatse
structures are correlated; our approach uses size carstex-
pressed using symbolic Presburger arithmetic expressmns
precisely capture these correlations.

Memory Recovery: Our type system captures the distinction
between shared and unaliased objects and supports the safe
explicit deallocation of unaliased objects.

Preconditions and PostconditionsEach method comes with

a precondition that captures both the expected sizes ofatze d
structures on which it operates and any correlations betwee
these sizes. The method'’s postcondition expresses theinew s
and correlations of these data structures after the metked e
cutes as a function of the original sizes when the method was
invoked.

Memory Usage Effects:Each method comes with a memory
effect. This effect uses symbolic values to specify botmtlag-
imum amount of memory that the method nansumend the
minimum amount of memory that it wilkecover Memory ef-
fects are expressed at the granularity of classes and caureap
not only the net change in the number of instances of each clas
but also the stack frames required to successfully exebate t
method. Note that our type system correctly takes tail gall o
timizations into account when computing the total size atkt
frames required to execute the program.

Our type system therefore captures both the amount of memory
required to successfully execute each method and the et eff
that execution on the amount of memory available to exehée t
rest of the program. To determine the amount of heap and stack
memory required for the entire program, one merely exantines
effect of themain method. By combining the various components
of this effect, one can obtain symbolic expressions (whaee t
free variables denote sizes of the inputs) that capture rireuat
of heap and stack memory required to execute the program. Our
type checking algorithm guarantees that well-typed pnogravill
execute safely given this amount of memory.

We believe that our type system can be of use whenever the
memory consumption of the program is of interest. It shode$§-
pecially useful for embedded and safety-critical softwaeeause
1) such software often operates on platforms with limitedants



of memory, and 2) failing because of insufficient memory caveh
severe real-world consequences. Our type system enalalateth
velopers of these systems to determine a safe upper bouriteon t
amount of memory that the program may consume and to provisio
their systems accordingly. This paper makes the followiogfri-
butions:

e Type System:We propose an advanced type system for object-
oriented (OO) paradigm that is able to specify memory usage i
a precise manner. To the best of our knowledge, this is ptgbab
the firstmemory usage type systéon OO paradigm.

Memory Specification: Our proposal includes a specification
mechanism for memory usage. l#ag abstractionnotation is

function). Moreover, it is possible to characterize the mgnton-
sumption and recovery as a symbolic expression which depamd
the (sizes of) program'’s inputs.

To help predict the memory usage of each program, we propose
a sized type systeffior object-oriented programs with support for
interprocedural size analysis. In this type system, sizpgties
of both user-defined types and primitive types are capturethe
case of primitive integer typet (v), the size variable captures its
integer value, while for boolean typeo1(b), the size variable is
eithero or 1 denotingfalse oOr true, respectively. For user-defined
class types, we us€ni,...,np) where ¢ ; ¢; With size variables
n1,...,n, to denote size properties that are defined in size relation
¢, and invariant constraint;. As an example, consider a stack class

used to capture symbolic counts of memory consumed and (which is implemented with a linked list) and a binary treass as

recovered by class types.

Heap Recovery: We advocate forexplicit heap recoveryo
provide more timely reclamation of dead objects in suppbrt o

tighter bounds on memory usage. We show that this recovery

mechanism may be systematically and safely inserted.

Stack Recovery:Explicit recovery mechanism is also extended
to the runtime stack. However, the operations for stackvego
shall be inserted automatically. With these recovery djsrs,
we show howtail-call optimizationcan be fully accounted.

Soundness:Our set of type checking rules have been proven
sound. Each well-typed program is guaranteed to meet itsmem
ory usage specification, and witlever fail due to insufficient
memorywhenever its memory precondition is met.

Implementation: We have built a type checker that is both
precise and practical. This prototype is used to confirm the
viability of our approach. We have successfully verified the
memory needs for a suite of benchmark programs with the help
of this checker.

The primary goal of our work is a framework for static verifi-
cation of memory usage for object-oriented programs. SHo< i
trates the basic idea using a stack example. Sec 3 preseats a ¢
object-oriented language, calledeMJ, with size, alias and mem-
ory annotations. Sec 4 describes our mechanism for memery us
age specification which requires explicit recovery of bataghand
stack spaces. Sec 5 presents a set of syntax-directed tgsefou
verifying the memory needs of user programs. Sec 6 preskats t
dynamic semantics for our BMJ language. Sec 7 outlines a set
of safety theorems which confirm that well-typed programeene
fail due to insufficient memory. Sec 8 describes how to pemfor
memory usage inference. Sec 9 describes our implementtidn
highlights a suite of programs whose memory requiremenis ha
been successfully verified by our type checker. Related svark
described in Sec 10, followed by a short conclusion.

2. Overview

Memory usage occurs primarily in the heap and the runtimeksta
The heap is used to hold dynamically created objects; trek sta
holds parameters of method calls and variables of locakisloa

our model, heap space is consumed vianeoperation for newly
created objects, while unused objects may be recoveredrvia a
explicit deallocation primitive, calledispose. Correspondingly,

shown below.
class List(n) where n=m+1; n>0 {
Object ()@ val;
List(m)@ next;

class Stack(n) where n=m; n>0 {
List(m)@ head,;

class BTree(s, d) where s=1+s;+SAd=14+maxd;,d2) ; S>0Ad>0 {
Object ()@ val,;
BTree(S;, d;)@ left;
BTree(Sp, d2) @ right;

List(n) denotes a linked-list data structure of sizeand sim-
ilarly for stack(n). The size relationgs==m-+1 and n=m define
some size properties of the objects in terms of the sizeseif th
components, while the constraimt-0 signifies an invariant associ-
ated with the class type. ClaBsree(s, d) represents a binary tree
with size variables andd denoting the total number of nodes and
the depth of the tree, respectively. Due to the need to treektates
of mutable objects, our type system requires the supportias a
controls of the formA=u|s|r|L. We useu ands to mark each
reference that is (definitely)naliasedand (possibly)shared re-
spectively. We use to mark read-only fields which must never be
updated after object initialization. We useo mark unique refer-
ences that are temporarily borrowed by a parameter for tragidn
of its method'’s execution.

To specify memory usage precisely, we decorate each method
with the following declaration:

tmn(t1v1,...,tnon) where @pr; dpo; €c; €r {€}

Note thatppr andépo denote the precondition and postcondition
of the method, expressed in terms of constraints/formuta¢he
size variables of the method’s parameters and result. Rdiam
¢pr denotes an applicability condition of the method in terms of
the sizes of its parameters. Postconditigncan provide a precise
size relation for the parameters and result of the declarttiod.
The memory effect is captured by ande,. ¢. denotesnemory re-
quirementi.e., the maximum memory space thay be consumed
while ¢, denoteset releasei.e., the minimum memory space that
will be recoveredat the end of method invocation. Memory effects
(consumption and recovery) are expressed using a bagootati
the form{(c;, a;)}™ |, whereg; is either a class type @ (the run-
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stack space is consumed upon entry to either a method call or atime stack), whilex; denotes its symbolic count.

local block, and is recovered at the end of their respectiopes.

Examples of method declarations for theack class are given

Memory usage (based on consumption and recovery) must bein Fig 1. The notation A |) prior to each method captures the

calculated over the entire computation of each prograns Tai-
culation is done in a safe manner to help identify the higiewa

alias annotation of the curremhis parameter. Note our use of
the primed notation, advocated in [22, 27], to capture irafies

mark on memory space needed. We achieve this through thd use ochanges on size properties. For theh methodn’=n-+1 captures
a conservative upper bound on memory consumed, and a censervthe fact that the size of the stack object has increased liymiady,
ative lower bound on memory recovered for each expressimh (a the postcondition for th@op method,n’=n—1, denotes that the



class Stack(n) where n=m ; n>0 {
List(m)@ head;

L | void()@ push(Object ()@ o)
where true; n’=n+1; {(List, 1), (S,5)}; {}
{ List() @ tmp=this.head,
this.head=new List(o, tmp)}

L | void()@ pop() where n>0; n'=n—1;
{(8,5); {(List, 1)}
{List()@ t1 = this.head; List()@ t2 = tl.next;
t1.dispose(); this.head = t2}

L | bool(b)@ isEmpty() where n>0; n'=n A
(n=0Ab=1V n>0Ab=0); {(S,5)}; {}
{List()@ t = this.head; bool()@ v = isNull(t);
this.head = t;v}

L | void()@ push3pop2(0bject ()@ o)
where true;n’=n+1; {(List, 2), (S,
{ this.push(o); this.push(o); this.pop
this.push(o); this.pop(o)}}

{(List, 1)}

9k
P(0);

Figure 1. Methods for thestack Class
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Figure 2. push3pop2: Heap Consumption and Recovery

size of the stack is decreased by 1 after the operation. Theonye
requirement for theush method,{(List, 1), (S,5)}, captures the
fact that oneList node will be consumed and the runtime stack
must have at least five words - two words for the parametersaed
word for the local block, one for return address and one fevipus
frame pointer. (To provide a specification that is indepebdéthe
compiler used, we could use a symbolic constant, Bay 2, to
denote the extra words needed to support each call frams. Thi
symbolic constant may be changed for different compilers. F
simplicity, we ignore this feature here.)

For thepop method, e, = {(List, 1)} indicates that oneist
object will be recovered. For thiesEmpty method,n’=n captures
the fact the size of the receiver objeeh{s) is not changed by the
method. Furthermore, its output of typeo1(b)@s is related to the
object’s size through a disjunctive constraigtonb=1 Vv n>0Ab=0.
Note that primitive types are annotated with aléabecause their
values are immutable and can therefore be freely shared @nd y
remains trackable.

For thepush3pop2 method, the memory consumed (or required)
from the heap if(List, 2)}, while the net release i§List, 1)}.
This is illustrated by Fig. 2.

The recovery of stack spacepsrfectat method boundary and
need not be explicitly specified. That is{ifS, k)} space from the
runtime stack is consumed, thé(s, k)} memory space will also
be recovered for the stack. Also, size variables and theistcaints
are only specified at method boundary, and need not be specifie
for the local variables. Hence, our use wfo1()@s instead of
bool(v)@s for a boolean-type local variable.

3. Language and Annotations

The language we focus on is a non-trivial core for an object-
oriented language with size, alias, and memory annotatitasall

this language MMJ. The syntax is given in Fig 3. A suffix notation
y* denotes a list of zero or more distinct syntactic terms that a
suitably separated. For exampley)* denotes(ty vi,...,tn vn)
wheren>0. Local variable declarations are supported by block
structure of the form(t v = e1; e2) with e2 denoting the result.

P ::=de" m*
de::= class c1(Ny.p) [extends c2 (N1 )] where ¢;¢ 7 {fd" (A|m)*}
fd=¢f
m::= ¢ mn((t v)*) where @pr; bpo; €c; er {e}
t =71 (n")OA
A:=U|L|S|R
Tu=c | pr
pr::=int | bool | void | float
wa=wv | v.f
ex=()null | k| w |w=e| tv=e1;e2
| newc(v*) | v.mn(v*) | mn(v*)
| if v then e else ez | v.dispose()
e={(c,a)"} (Memory Space Abstraction)
¢c F (Presburger Size Constraint)
=blp1Ag2 |1 V2| |In-o|Vn- o
b € BExp (Boolean Expression)
= true | false |a1=a2 | a1 <az | a1 <az
a € AExp (Arithmetic Expression)

n= kP n kP s o | artas | —a
| maxai,a2) | min(ai,a2)

whereki™® ¢ Zis an integer constant
n € SV is a size variable
f € Fd is afield name
v € Var is an object variable

Figure 3. Syntax for the MemJ Language

We assume a call-by-value semantics foe™0, where values
(primitives or references) are passed as arguments to ptgen
of methods. For simplicity, we do not allow the parameterbeo
updated (or re-assigned) with different values. There idass
of generality, as we can always copy such parameters to local
variables for updating, without altering the external hebar of
method calls.

The MemJ language is deliberately kept simple to facilitate the
formulation of static and dynamic semantics. This core Umyg
can be extended with syntactic abbreviations to make pnogriag
more convenient. Some syntactic conveniences include:

e Multi-declarations block is an abbreviation for nestedresp

sion blocks.
(di;-5dnie)=(di;(--(dnse)--))
e Sequence is a special case of local block, wheris of void
type; as shown belo
(e1; 62\9, (void()@B v =e1 ;e2)
For convenience, we introduce an alternative sequencehwhic
returns the first FUb expressmn as its result.
€2 tv=e1; ; €25V
e Expressions may be used where variables are expected, aided
by the following equivalences.

m(er,...,en) =
(trvi=e1;5tnvn =en; ,Un))
if e1 then es else ez =
(bool()@ v = €1 ; if v then ea else e3)

m(vi,...



e Loops can either be supported directly or be viewed as syn-

tactic abbreviations for tail-recursive functions. Withter-
convertibility, we use the former for execution and thedatt
(which uses slightly more stack space) for type checking.

Several other language features, including downcast tipera
while loop (to eliminate stack frame) and a field-binding congtruc
(similar to pattern-matching), are also supported in oylé@men-
tation. For simplicity, we put them in the appendix, as thyp
supporting roles and are not core to the main ideas propa=ed h

To support sized typing, our programs are augmented with siz
variables and constraints. For size constraints, we ptigsestrict
to Presburger form, as decidable (and practical) constsainers
exist, e.g. [30]. For simplicity, we are only interested iack-
ing size properties of objects. We therefore restrict thatien ¢
in each class declaration of (n1.,) which extendscz(ni..4) to
the formA7_ | | ni=a; wherebw(ai)n{n1,..,np} = 0. Note that
V(a;) returns the set of size variables that appeared inThis re-
stricts size properties to depend solely on the componéritew
objects. (Size constraints between components, such sesfithand
for balanced heights of AVL trees are disallowed here, but be
placed in¢; instead.)

temporarily lent out to method calls. They allow the prea@on
of uniqueness together with precise size-tracking acresthods.
Consider the following method with twioist parameters.
void()@ join(List(m)@ x, List(n)@ y)
where n > 0;m/=n+m;- - -
{ if isNull(x.next) then x.next =y
else join(x.next,y) }

The first parameter is annotated last-onceand can thus be
tracked for size properties without loss of uniqueness. él@y
the second parameter is markaniqueas its reference escape the
method body (into the tail of theist from the first parameter).
In other words, the parametgican have its uniqgueness consumed
but notx, as reflected in the body of the above method declaration.
Given two unique listsa andb, the calljoin(a, b) would consume
the uniqueness af but not that ofa. Our lent-once policy is more
restrictive than the policy of normal lending [1] as we reguéach
lent-once parameter to be unaliased within the scope oféthodl.
For example,join(a,a) is allowed by the type rules of [1], but
disallowed by our lent-once’s policy.

In our alias type system, uniqueness may be transferred (by
either assignment or parameter-passing) from one loc#tini-
able, field or parameter) to another location. Consider a typ

Note that each class declaration has a set of instance nsethod environment{x::0bject () @,y::0bject ()@, z::0bject ()@} where

whose main purpose is to manipulate objects of the decldasd.c
For convenience, we also provide a set of static methodstiwth
same syntax as instance methods, except for access tmibe
object.

One important characteristic of 1J is that memory recovery
is done explicitly but safely (without creating danglindenences).
In particular, dead objects may be reclaimed via.@ispose()
primitive. While heap space recovery is the responsibiitythe
programmer, the stack recovery commands shall be autaaiptic
inserted (see Sec 4.3 for a translation scheme). To achigee a
matic stack recovery, we add two primitives into an extendést-
mediate language, as follows.

erm o | TeLaGK R 6) | relp(R, K, )

Note thatrelp andrel 4 are for the explicit recovery of; +k-
space from the stadieforeandafter (respectively) the evaluation
of its expressionr. Thek; value can only be either 0 or 2 depending
on whether it is a local or method block denotes the number of
non-void parameters/variables in the frame. ez command is
used to support tail-call optimization, whereby the stamtorery
is madebeforethe last call is evaluated.

3.1 Alias Checking

We introduce four alias control mechanismss |r | L adopted
from [6, 9, 1]. These alias mechanisms shall be used to stippor
precise size tracking in the presence of mutable objects atso
for the explicit recovery of memory space when unique object
become dead. For size-tracking, we introdieenode fields to
allow size-immutable properties to be accurately trackadail
objects. For example, an alternative class declaratioritferlist
data type is given below, where itsxt field is marked as read-
only (or immutable). Note that thex1 field remains mutable.
class RList(n) where n=m+1; n>0 {
Object ()@ val,
RList(m)@ next;

The size property of such agList type can be analysed at
compile-time, while allowing its objects to be freely starelow-
ever, this comes at the cost of losing both mutability andjuei
ness.

We make use of.-mode parameters, with tHamited unique
(or lent-onc@ property [9], to capture unique references that are

variablesx and y are unique, whilez is shared. In the code
{x =y; z = x}, the uniqueness af is first transferred to location
x, followed by the consumption of uniquenessxothat is lost to
the shared variable. Alias subtyping rules (shown below) allow
unique references to be passed to shared and lent-onciefecén
addition to other unique locations), but not vice-versa.

A<asA U<,L U<,S

A key difference of our alias checking rules, when compared
to [1], is that we do not require an external “last-use” asilyfor
variables. Neither do we need to change the underlying strsan
of programs to nullify each field location whose uniquenedsst.

We achieve this with a special set of references whose unégpse
have been consumed, calleidad-setof the form {w*} where

w = v | v.f. This dead-set is tracked flow-sensitively in our system
using type judgement of the form:

I'Oke:t, 01

Here, each dead-set(©,) captures the set of references with
consumed uniqueness before(after) the evaluation of ssjoree.
T is a type enviroment which maps variables to their annotated
types. Other type judgements for methods, classes andgmsgr
have the following forms.

I' Fmeth meth Faerdef  Fpdef; , meth.; 4

More details of our proposed alias annotation mechanism are
described in another report [13]. In the Appendix, we givaile
of a separate set of alias checking type rules in Fig 10.

4. Memory Usage Specification

To allow memory usage to be precisely specified, we propose
a bag abstraction of the forfic;,«;)}" ; wherec; denotes its
classification, whiley; is its cardinality. In this paper, we shall use
c; € CNU {S} whereCNdenotes all class types. For instarite,=
{(c1,2), (e2,4), (S, 3)} denotes a bag with; appearing twicegs
appearing four times ané appearing thrice. We provide the fol-



lowing two basic operations for bag abstraction to captaté the List nodes to be consumed on entbgforethe same number of

domain and the count of its element, as follows: List nodes be recovered. This new memory effect has the poten-
tial to push up the high-water mark of memory usedpbyist
domY) =4 {c]| (¢n)eT} nodes.
T (c) =g n, if (e,n)e®
0, otherwise
We define several operations (union, difference, exclysigar
bags: 4.2 Heap Recovery
TiwYe =g {(c, T1(c)+T2(c)) | Ve € dom(T1) Udom(T2)} In MEMJ, heap space recovery is achieved explicitly (and safely)
T1 -T2 =g {(c, T1(c)=T2(c)) | Vc € dom(Y1) UdomY2)} through thedispose primitive. Explicit recovery of heap space has
TAX =af {(c,Y(c)) | Ve € dom(T) — X} several advantages. It facilitates the timely recovery escob-

jects, which allows memory usage to be predicted more atlyra
(with tighter bounds). It also permits the use of more effitigus-
tom allocators[4], where desired.

Moreover, we shall provide an automatic technique to insert
dispose primitives with the help of alias annotation. With such
guidelines, the programmers’ main role is to ensure thaatbjthat
q are being disposed are non-null. This non-nullness infionaan
be captured by a non-nuliness analyser, such as [18], fanalete
solution to explicit heap recovery. Let us see where heapvesy
should be made.

Memory recovery viaiispose should occur when unique ref-
erences that are still alive (not in dead-set) are beingadisz.
This could occur at four placés (i) end of local block, (i) end of
method block, (iii) prior to assignment operation, and ét/fondi-

To check for adequacy of memory, we provide a bag comparator
operation under a size constraint as follows:

AFYTy 37T =df (A = (VC (S Tl(c) > TQ(C)))
where Z = dom(Y) Udom(Y2)

The bag abstraction notation for memory is quite general an
can be used in different ways. For example, if a small memory
footprint is needed, we could bundle our system with a memory
compacter and then change the memory abstraction to a coarse
one with only two classifications, namely heap (denotedtpwnnd
runtime stack (denoted by denoted®y For simplicity, we shall
only use the memory abstraction that is grouped by class tigrel

stacks). tional expression. We would like to recover the memory sgace
4.1 Memory Consumption each non-null reference that is about to become dead. Forea

i ) . consider theop method’s definition:
Heap space is consumed when objects are created hyitlpeimi- L | void()@ pop() where - -
tive, and also by method calls, except that the latter isegaied to {List()@ tmp = head.next; head = tmp}
include recovery prior to consumption. Our aggregatiorréabv- The object pointed to byead is about to become dead prior to
ery prior to consumption) is designed to identify a high-evahark the operationhead = tmp. TO recover this dead object, we may in-

of maximum memory needed for safe program execution. Fdr eac sert adispose command to obtaiRead = (tmp <;head.dispose()).
expression, we predict a conservative upper bound on theonyem  As another example, consider a definition of #eetroy method
that the expressiomay consume, and also a conservative lower which callsemptyStack with anL-mode parameter.

bound on the memory that the expressisiti release. If the ex- void()@ destroy(Stack(n)@ s) where - - -
pression releases some memory before consumption, we seill u {emptyStack(s)}

the released memory to obtain a lower memory requiremerth Su void()@ emptyStack(Stack(n)@.s) where -
aggregated calculations on both consumption and recoeerfielp {bool ()@ v = s.isEmpty();

if v then () else {s.pop(); emptyStack(s)}}

A unique s object is about to become dead at the end of the
destroy method. To recover this space, we shall insetrtspose(),
prior to the method'’s exit.

We present an automatic technique for the explicit recoeéry

capture both a net change in the level of memory, as well as the
high-water mark of memory needed for safe execution.

For example, consider a recursive function which depsps
from one stack object, followed by the same number of pushes o

another stack. (For simplicity, we omit the usage speciboaof dead objects that are known at compile-time. Given an esjmes,
runtime stack.) ) ) we utilize the alias annotation to obtain a new expressionhere
void()@ moverec(Stack(n)@.s, Stack(m)@ t, int(p)@ i) suitable explicit heapispose operations have been safely inserted,
where n>p>0; n'=n—pAm’'=m+p; {};{} as follows, whered(©+) denotes the set of dead references before
{if i<1 then () (after) the evaluation of expressien
else {Object()@S o = s.top(); s.pop();
moverec(s, t,i—1); t.push(o)} } CiOFeyer 01

Due to aggregation (involving recovery before consumption
the heap space that may be consumed is zero. For each recursiv \jost ryles are structure-preserving (c.f. identity) réings, ex-

call, the space for aist node is released by.pop() before it is cept for four rules, where a sequence of disposal can beteffec

reused byt push(o). Aggregated over the recursive calls, we will ,5,,ghdisposéD), with D containing a set of variable/field refer-
havep number ofList nodes that have been released before the ences that are to be disposed at the end of expression

same number of nodes are consumed. Hence, no new heap space Is
needed. Such aggregation is obviously sensitive to the ofdde

operations. [H:ASSIGN

Consider now a different function which performgushes on —isParam(w) T['(w)=t D={w]ann(t) =U}— 6,
t, followed by the same number of pops fram OFe—pernt,01 Fip <t
void()(@ moverec2(Stack(n)@. s, Stack(m)@. t,int(p)@ i) ez = (e1 << D=0 1> e1 <; disposé¢D))

where n>p>0; n'=n—pAm/=m-+p;{(List,p)}; {(List,p)} [0 Fw=e<—yw=es :: void@, O1\w

{if i<1 then ()
else {Object()@S o = s.top(); t.push(o);
moverec2(s, t,i—1); s.pop()} }
Though the net change in memory usage is also zero, the mem-INote that unique reference cannot escape thraugln ei;es as we
ory effect for this function is different as we requisenumber of requiree; to be of thevoid type.




[E:METH]

Dy =T 4 {v1 = t1,..,0p 1 tp}
I;0Fe—ner 1,0 Ft<:tg ann(to);éL
Vi€ l.p- (ann(t;) =L) = (Vf - v;.f € ©)
D={w]|(w:t) eT',ann(t) =U} — O
ez = (e1 << D=0 1> e1 <; dispos¢D))

I' Fmethto mn((t; vi)ii..p){et —n to mn((ti vi)ia.p) {e2}
[H:LOCAL]
I'OFe; —Hes t1,01 FHip <it
ann(t) € {L,R} T +{v:t};01F ez —Heq::ta,Os
D = {v]|ann(t) = U} — O3
es = (e4 < D=0 > es<; dispos¢D))
0k (tv=e1;e2) —n (tv=e3;es5) :: ta,O2\v
[H:IF]

T'(v) =bool(b)@ TI';0F e —né; 1,0, i=1,2
t =mssfti,t2) ©3=0,U02 D;=03-0; i=1,2
E; = (é; <D;=0 1> é;<;disposé€D)) i=1,2
I';© F if v then e] else e2 —H if v then F else F :: t,O3

For the assignment rulei:assign], we addw to the disposal

setifitis unique and is not yet in dead-set using: {w | ann(t)=U}-0;.

For the method declaration rulei:meTH], we add to the dis-

posal set those parameters which are unique but not yet dead u

ing {w| (w:t)€l'i,ann(t) = U} — ©. For the local declaration
rule [m:Locav], we addv to the disposal set if it is unique but
not yet dead usindv | ann(t) = U} — 2. For the[n:1F] rule, the

uniqueness that are consumed in only one branch may have thei e

PR\
(ecurSVe
5
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Figure 4. Stack Configurations for Execution afiptystack

Recall that the first argument of the1, command is to distin-
guish between local and method block. We assign a valefaf

the latter, so as to provide recovery for two extra words qmes

in each method’s stack frame. For the second rule, wé sethe
number of parameters usifgpm(I")| + |v*|, wherel' may contain a
this parameter. We also use a set of rewritings (denoted-gy to
aggregateel 4, commands of nested blocks together, and to push
eachrel, command towards the last subexpression that may be
evaluated. The first rule is in a special form as only the ooost
rel , command may originate from the method block.

rely (b7 ]fl,I‘elA(O7 ko, 6)) —orely (b7 k1 + ko, e))
rela(b k, (tv=-e1je2)) —o (tv=ei;rela(b k, ez))
rel o (b, k,if v then ey else e2) —0
if v thenrel (b, k,e1) elserel (b, k,e2)

For re1 4, command that originates from method block, and if
last sub-expression is a call, we optimize its stack eisesga

heap spaces recovered in the other branch. This is captyred b tajl-call. This is done by replacing with®1 z command, as shown

D; =05-0; ,i=1,2.

Some other notations used are described below. The function

isParan(w) returnstrue if w is a parameter variable, otherwise
it returnsfalse (for fields and local variables). The functiann
extracts the alias of an annotated type)(v*)@\) = A. The con-

ditional is expressed @s < b> & =g { g gtﬁerwise Further-
more, we have:
O\v =g © —{v,v.f"}  O\v.f =g ©—{v.f}

while msstt;, t2) returns the minimal supertype of bathandt,
as follows:

T <:T To<:T Vr3-(T1,T2 <:T3=T <:T3)
A1<oA A<oA VA3 - (A1, Ac<oAs= A< A3)
mss{r1 @\, 2 @\2) =4r TGN

Note thatr; <: 7> denotes the subtype relation for underlying
types (without annotations).

4.3 Automatic Stack Recovery

A crucial difference of the stack, when compared to the héap,
that the former is lexically scoped and has perfect recoweéiys
space. Its memory usage could thus be tracked without leakag
For stack space, the main rationale for explicit recovety i&cil-
itate tail-call optimization to minimise on stack usage. pvepose

to achieve this through a transformation scheme. Spedyiioat
introduce the following set of translations (for expressiometh-
ods and class declarations) to automatically insert stackvery
operations.

I' - meth—g meth

Most of the rules are structure-preserving (c.f. identigyyritings,
except for the following two cases wherea 4, command is being
inserted.

k= (0<typg(t) =void > 1) e —se3 €2 —seyq
(tv=-ei;e2) —srely(0,k, (tv =e3;ea))

e —gel k = |domI")| + [v*]|
T Ftmn((t v)*) where ¢pr; dpo; €c; er{e} —s
t mn((t v)*) where @pr; dpo; €c; er{rela (2, k,e1)}

e —gel def"—>s defl

below.
e =mn(v*) | v.mn(v*) b=2
rel (b, k,e) —orelp(b k,e)

Consider the followingmptyStack method.
void()(@ emptyStack(Stack(n)@.s) where - --
{ bool()@ v = s.isEmpty();
if v then () else {s.pop(); emptyStack(s)}}

After the insertion ofre1 4 primitives by —s, we initially obtain
the following method body where the stack requirement isdirto
its input size.

void ()@ emptyStack(Stack(n)@ s) where n>0Ad=n;
n'=0; {(S,4xd+8)}; {(List,d)}
{rel4(2,1,rel 4(0,1,(Bool({)@ v = s.isEmpty();
if v then () else (s.pop(); emptyStack(s)))))}

Fur-

ther rewriting by—o would result in the following code with the
effect of tail-call optimization.

void() @ emptyStack(Stack(n)@. s) where n>0Ad=n;
n'=0; {(S,9)}; {(List, d)}
{(Bool ()@ v = s.isEmpty();
if vthenrely(2,2,())

1 . ; relp(2, 2, emptyStack .
One benefit (()?‘ Fﬁfas(%év?/ c%(de is tha |tsascta(cslz)%)p}ace requireisien

now {(S,9)} instead of{(S,4xd+8)}. Fig. 4 illustrates the effect
of tail-call optimization on the runtime stack.

5. Type Rules for Memory Checking

We present type judgements fexpressionsmethod declarations

class declarationandprogramsto check for adequacy of memory,

using relations of the form:
A YHet, A1, T =P

' Fmethmeth  Fgjass def

Note thatl" is a type environment mapping program variables
to their annotated typegs(A;) denotes the size constraint, which



holds for the size variables associated witfl" andt) for expres-
sion e before (after) its evaluatiory, is an annotated type. Also,

is being updatedcf. [22]). For example, ifA=n'=n+bAb'=3,
we expect the program state after the assignmesnt + b to be

Y(Y1) is used to denote the available memory space in terms of As=n'=(n+b)+b'Ab’=3. This can be obtained by:

bag abstraction before (after) the evaluation.

We present a few key syntax-directed type rules in Fig 5, with
the rest of the rules in the Appendix (Fig 11). Before thatuke
describe some notations used by the type rules.

5.1 Notations

We use functiorv to return size variables in a size formula, e.g.,
V(z'=z+1Ay=2) = {2’,y, z}. We extend it to annotated type, type
environment, and memory specification, ez (n*)@)={n*},
V({(8, 4xd+8)})={d}. While the functionv,, is used to return size
variables in unprimed form, e.g. (z'=2z+1Ay=2) = {z,y, 2}.

The functionprime takes a set of size variables and returns
their primed version, e.orime({s1,...,sn})={s},...,s),}. Note
that prime operation is idempotent, namely=+'. We extend
this to (annotated) type, type environment, and even dubsti
tion. For example,prime(r(n1,...,ny)) = 7(nf,...,n}), and
prime([z—a, y—b]) = [z'—a’,y'—b]. Often, we need to express
a no-change condition on a set of size variables. We defire a
operation as follows which returns a formula for which thigjioal
and primed variables are made equal.

noY ({}) =4 true no¥ ({z}UX) =4 (z'=x)Ano¥(X)

We extend this function to annotated types (and type environ
ments), as followsioY (¢) =45 no¥ (V(t)). Also, we use* = fresh()

to generate new size variables. We extend it to annotated type,
so thatf = fresh(t) will return a new typei with the same under-
lying type ast but with fresh size variables instead. The func-
tion equatdt; , t2) generates equality constraints for the correspond-
ing size variables of its two arguments, usually when both ar

guments share the same underlying type. For example, we have0

equatéInt(r), Int(s’)) = (r=s’). The functionrenamét,ts) re-
turns an equality substitution, ex@gnaméInt(r), Int(s’))=[rs’].
The operatoru combines two domain-disjoint substitutions into
one.

The functionfdList is used to retrieve a full list of fields for
a given class, together with its size relation. The funciionis
used to retrieve the size invariant that is associated vaith ¢ype.
This function shall also be extended to type environmentiandf
types. The functionvseqy classifies size variables from each field
into three groups : (i) immutable, (i) mutable but uniquai) (
otherwise (non-trackable).

5.2 Assignment

The [assieN] rule captures imperative updates (to object fields
and variables) by modifying the current size constraint toee
updated state with changes to the imperative size variffoesthe
LHS. From the rule, note thatt w :: t,¢, Y is to identify Y as a
set of imperative size variables and also to gather an ewggifor
this set. The subtype relationt; <: ¢, p will return a substitution
that maps the size variables of supertype to that of the pabty
This mapping ignores all non-trackable size variables iy be
globally aliased, but immutable and unique mutable sizeab#es
are captured by it.

GivenT’ = {n :: int(n)@,b :: int(b) @@}, consider:

D;A; Y Fn+b:int(s)@, A1, T
T F n:int(r),r=n/,{n} F int(s)<:int(r),[rs]
A1=AAs=n/+b"  Ag=3s,r - (Ajopny[r—=slr=n’)
;A YFn=n+b:void)@®, Az, T

This example illustrates hoyrimed notation is used to repre-
sent the latest values of size variables at each post-$taitso
shows how updates are effected by a sequential composifion o
erator,oy, with Y = {n} to denote the set of size variables that

Ao Js, 7 - AAs=n/+b" oy s=n’
3s,r - Ing - ng=n-+bAY =3As=ng+b' As=n’
ds,r - b'=3As=(n+b)+b As=n'

b’ =3\ (n+b)+b'=n’

More formally, sequential composition is defined as:

Aoy ¢ =g 37170 p2(A) A p1(9)
where Y = {s1,...,sn}; {r1,...,rn} =fresh)
p1=[si = milily; p2 = [s] = ]y

5.3 Memory Operations

The heap space is directly changed by ibe anddispose prim-
itives. Their corresponding type rulesygw] and [pisposg],
would ensure that sufficient memory is available for constionp
by new and will credit back space relinquished Byspose. The
memory effect is accumulated according to the flow of computa
tion. Consider:

A"TE{(LiSt,l)} A1:Ao{w}x’:x+l
I A; T F x = new List(o, x) :: void()@®, A1, T—{(List, 1)}
Ty=(Y—{(List, 1) D{(List, 1)}
I'; Ay; Y—{(List, 1)} F y.dispose() :: void()@, A1, Y1
I'; A; Y+ x = new List(o, x); y.dispose() :: void()@, A1, T

The new oOperation consumes st node, while thedispose
peration releases back est node. The net effect is that available
memoryY is unchanged. However, due to the order of the two op-
erations, we requirda-Y3J{(List, 1)} which affects the maximum
memory required.

Several other rules also have a direct effect on memory. The
rules ReL—B] and [ReL—A] are used to recover stack space be-
fore and after the evaluation of their expressions, resmdygt For
the method invocation rulayai], sufficient memory must be avail-
able for consumption prior to the call (as specifiedby- T 3e.),
with the net memory release added back in the end (as speojfied
Y1 = Y—(e.\{S})we,). Note that stack space is fully recovered (as
S is excluded from consumption ky\{S}). Each method precon-
dition must be met by the pre-state of its caller. This is &bddy
ARy IV(ec)UV(er)-p ¢pr Which uses the logical relatios> x,
defined as:

Ar>x ¢ =4 (A= pgo), where
p=|[s1— 8], sn— s, ]andVy (o) N X = {s1,..,5n}.

5.4 Conditional

Our type rule for conditionalif] is able to track both the size-
constraints and memory usages in a path-sensitive manatr. P
sensitivity is encoded by adding=1 and¥’=0 to the pre-states
of the two branches, respectively. We achieve path-seitgifor
memory usage specification by integrating it with relaticsiae
constraints derived.

GivenT = b::Bool(b)@, s::Stack(s)@, we can derive:

ANY'=1FTT{(List, 1),(S,5)} A1=AAb=1oy4 s'=s+1
T; AAY'=1; T F s.push() :: void()@®, A1, Y—{(List, 1)}
ANV =0ETI{(S,5)} A2=AAY=00;4s'=s-1
T; AAY'=0; T F s.pop() :: void()@, Az, TW{(List, 1)}
(—7 T3, Ag):UﬂifY(_, =) T_{(LiStv 1)}7 T&J{(LiSt7 1)}7 Aq, AQ)
T;A; YT if b then s.push() else s.pop() :: void()@, A3, T3




[ASSIGN]

A Y Fest, A, Ty
F'Fw:t,g,Y Fit <:itp
X =V(t1) UV(t)

Ao =3X - (A1 oy po)

[1F]

I'(v) = bool(b)@
;AN =1; T ey b1, A1,
;AN =0; T Fesgiita,As, To

(t, Y3, Az) = unify(t1,t2, T1, T2, A1, Ag)

[NEW]
fdList(c(n*)) = ([(E: £)I7_,, @)
r* =fresh) ¢; = prime(I'(v;))

Ft; <:[R+ S]t;, p; i€1..p
p=[n*—rJuli_pi
AFEYJ{(c,1)} X =Uj_, V(&)
AL =AANEXpd) Y1 =T—{(c,1)}

;AT Hw=e:void()@, A2, T1

T A; T F ifvtheneg elsees i t, Az, T3

D; AT Fnew c(vr..p) = e(r)@, Ay, Ty

[METH]
Ty =TU{v1 1,0 5 dp} A =noX(I'1)AgprAinv(I'y)
(-4-,Ni) = Vsiewg(fs), i€l.p Y=UEL N;
e =e. — {(S, (p3 < thiscdomT") > pt2)) }
Ale.J0 T'i;Aje Feu L, AL, T ¢prAALEYL Jep
Abedd Fi<:t,p (FprimelY) - A1) = p (¢po)
Y1(S) = ee(S) € (S) =0

[DISPOSE] [REL—A]
I'w) =c(n*)@ [REL-B] ;AT ety A, Ty
Ti=TW{(c,1)} D A YW{(S,b+k)} Fetr1, A1, e={(S,b+k)}
I'; A; T+ v.dispose() :: void()@, A, T1 T;A; Y Frelp(b k,e) :t1, A1, T T;A; T Frela(b,k,e)::ti, A1, TiWe

p = renamét, t)Up, Uprime(pp)

1]
F (Al mr((faf)i)i:l“p) where ¢pr; dpo; €c; er{e})Ec(n™)
t =freshit) to=c(n*)@ T'(v;)=t; i€0..p
bt <iti, pi i€lp pp=U"y pi A1k T3e
Ay IV(ec)UV(er) p dpr
Ay =Aop Y- p(gprAdpo) Ti1=T—(e\{S})Wer
X=U_ V() Y=XuprimeX) L=U",V(t;)

I Fmethl mn(({z V;)i:1..p) where dpr; Ppo; €c; €r {€}

DAY Fvg.mn(vr, p) 8, A, Ty

Figure 5. Some Type Rules for Memory Checking

Take note that theinify operation merges the post-state con-
straints and memory usages of the two branches togetherdiga a
junction, as follows:

t=unify(t1,t2) p; =renamét;,t), i=1,2
S =domY;)udomYs2) T ={(c,nc)|ce€ S,n.="fresh)}
¢ =p1(91A Aces ne=T1(c))Vp2(d2AAces ne=T2(c))
unify(t1, t2, Y1, T2, é1, ¢2) =aqr (¢, T, )

T@\=mss{r @11, 2@2) r* = fresh))
unify(r (n*)@\1, 72 (m*) A2) =g4p 7(r*)@A

For example, ifA = (s’=s) and Y = {(List, 2), (S,5)}, we can
obtainAz = (V'=1As'=s+1Ad=1Vb'=0As'=s—1Ad=3) and T3 =
{(List,d), (S,5)}. Path-sensitivity adds precision to our analysis
and is instrumental in analysing the memory requiremenecdir-
sive methods.

5.5 Method Declaration

Each method declaration is checked to see if its definitiaois
sistent with the memory usage specification given in its ateel
tion header by thenieTH] rule. The initial memory is built from
e=e.—{(S,---)} after subtracting the method’s stack frame. The
final available memory of the method bodyis T; which must
not be less that the declared net memory release (as speuyfied
¢prAA1 Y1 Jer). Perfect recovery of stack space is mandated
by T1(S) = €c(S).
For example, consider the following definition pfish after
explicit stack recovery operations have been inserted.
L | void()@ push(Object ()@ o)
where true;n’=n+1; {(List, 1), (S,5)}; {}
{List()@ tmp = this.head;
rels(2,3, this.head = new List(o, tmp))}
Under the above declaration, we haye= {(List, 1), (S,5)}
ande, = {}. Lettinge; to denote the body, we could type check the
method, as shown below.

Aike; J{(List, 1)} ex=e1—{(List, 1)}
AQ:Alo{n}n’:m’—i-l
T'1;Aq;e1Fthis.head = new List(o, tmp)

:void ()@, Ao, e
T'1;Aq1; €1 Frela(2,3,this.head = new List(o, tmp)) ::
VOid()@,Az, €3
I'; A;e b this.head :: List(s)@, AAs=n', ¢
Iy =T 4 {tmp :: List(m)@} A1 = (AAm/=n)
=~ {(S. 1)} AFeI{(S,1)}
;A ep : void() @B, As,e3
I" = {this :: Stack(n)@, o :: Object ()@}
A=(n'=n) ¢ = {(List, 1},(S,5)} — {(S,4)}
Ay = (n'=n+1) AgtezI{} truetel)
trueF{}J0 e3(S)=5 {}(S)=0
{this :: Stack(n)@} Fmethvoid()@ push(Object ()@ o)
where true;n’=n+1; {(List, 1), (S,5)}; {} {ep}

€ez=e€aly
{(S,2+3)}

Note thatA = (n’=n) captures the initial size constraint on
method entry, while captures the available memory after subtract-
ing the method'’s stack frame. Alse;={(S,5)} is the memory
space that remains after the evaluation of the method bdug. T
must be no less than the (declared) memory to receveFurther-
more, stack recovery is expected to be perfect, witls) = e.(S).
We also check that postcondition is correct wikh = (n’=n+1).

Behaviour subtyping is supported for method overridingsTh
captured by the¢dveErriDE] rule in Fig 11. Each method which
overrides another is expected to dentravarianton its precondi-
tion (and memory consumption) andvarianton its postcondition
(and memory releases), in accordance with the subtypingeptyp
of functions.



6. Dynamic Semantics

The dynamic operational semantics is described in smatisste
Notations used are defined as follows.

Locations: v € Location
Primitives: € prim= int Wbool W float

W null Wvoid
Values: 6 € Value= primw Location
AnnVal: v € Aval= (AT x Valug
Aliases: A € Af=AuwUp
Store: w € Store= Location —f, ObjVal
Variable Env.: II € VEnv= Var —gj, Aval
Avail. Mem.: o = {(c,k™* | c€ CNU{S}, k" € Z}
Object values n € ObjVal= Type x (Fd—fnAval)
Type: 7(n*) € Type=CNx SV

Note thaff : A —¢;n B denotes astackablemapping fromA to B.
Such a stackable mapping is defined as:

A —iin B =g (A™ —n B, int)
whereint denotes the current frame number of the mapping, while

Airt denotes the domain that has been marked with frame numbers.

Each time a new frame is created, the current frame number is
increased by 1. Frame numbers are useful for formulatindgtiite
once (or limited unique) property for stack frames. Mainrapers
are:
Start a new frame
newframéf, n) = (f,n+1)
Push variables into current frame
) +{(vev)} =+ {(" —v)} n)
Pop variables from the topmost frame
(f.n) — {v*} = ) )
let f =f\{(vV")*} in (f, max{m | Ju - u™ € dom(f)})

The variable environment is such a stackable mapping. We
write I1[v/v] to denote an update of the value of the latest vari-
ablev in II to v. We writeII 4+ {v — v} to denote an exten-
sion ofII to include a binding of to v, while IT — {v*} removes
a subset of the mappings. Similar notations are used for phe u
date and enhancement of object values and stores. In theotase
store, we usew—. to denote the store obtained from by re-
moving . from dom(=w). We also provide an abbreviated notation
wlv/i.f] =4 let (t,p) = w() inw|(t, p[v/f])/¢]. Given an ob-
jectvaluen = (¢, p), we haveFlds(n) =4 p andtype(n) =4 t.

We maintain alias annotations for variables in the stack and
for fields in the store at run-time. We enhance the currenbfet
alias annotations with a new valuep. A variable/field can be
assigned an aliasy, if its original alias annotation wag, and it
has since relinquished this uniqueness ownership (offisarce).

By maintaining this annotation at run-time (correspondimgead
set for static semantics), our system (both dynamic anditkiat
able to identify all unique references which have been cmesu
via read operations. The size and alias instruments areardgd
for proving the soundness of the type system. They can becras
without affecting the underlying semantics.

We require some intermediate expressions for the dynamic se
mantics to follow through. Our syntax is thus extended from t
original expression syntax as follows:

en=---|v|v|ret(Vv'p,e)

The expressiomet(v*, p, €) is used to capture the result of eval-
uating a local block, or the result of a method invocatione Tikt

of variables associated wiifet is the local variables declared and
used by the block. This set of variables is popped from theksia
the end of the block’s evaluation. We also supplio capture the
mapping of formal parameters to actual arguments for methtd
This is used by the soundness proof.

[ELF]
v* CdomI) T3, A;TFent, A, Ty
v* ={v1,...,vp} X =V('(v*)) Y =X Uprime(X)

p2=U {pilti =T(vi), ti =T(pvi), by <:ti,pi}h_;
;3 A; 7 F ret(v*, p,e) £, 3Y - (prime(p2) A1), T1

[Lod]

DS AT Hea X))@, A, Y
[A-DATA]
TS ATHES A, T Ap=ann(t) A <, A
T3 AT (A0) = [Ar— Alt, A1, Ty

Figure 6. Type Rules for Intermediates

The type rules for intermediate expressions are given irbFig
The subsumption rules for size and memory are given below.

[suBsi] : (Covariant)
i A YThent, A1, T A1EYT J7
;A T e t,Ar, Yo
[suBsz2] : (Contravariant)
;AT Fent, AT Ao ETo ITy
3 A0 Yo ke t, AT
The dynamic evaluation rules are of the following form.
(L@, 0) [e] = (Il1, @1, 01) [e1]
We shall formulate the rules using an exception-style s¢icgn
with four possible errors, namely= Err-Alias | Err-Mem | Err-Null
| Err-Prim . Whenever one such error is raised, the evaluation aborts.

This error occurrence can be stated usifigw, o) [e] — E. The
complete set of evaluation rules is given in Fig. 7.

Al =>A2

Ao = A1

7. Soundness

We shall formulate and prove several novel safety propgertie
that our type system possess. Our alias checking rules emnsur
that well-typed programs are subject to several alias ptigse
including:

e the uniquenesroperty: all unique references are unaliased
during the evaluation;

o thelent-onceproperty: each unique reference can only be lent
once within each stack frame; and

¢ theread-onlyproperty:R-mode fields never change during eval-
uation.

We have formally defined and proven all these properties for
an object-based imperative languagev®liin an earlier work [13].
The main new properties to prove concern the safetyiepose
and the soundness of memory specification. Before statihga t
rem on the safety afispose, we give several formal definitions.

DeFINITION 1 (Liveness & No-Dangling).

e A runtime values is said tolive wrt the storew, denoted as
live(s, =), if & is a primitivek, or § € dom(w).
e A runtime environmen(l, «) is said to beno-danglingwrt the
dead se®, denoted a® Fngpang (11, @), if the following hold:
= Yoedom(I1)—© - live(sndII(v)), @)

= Viedom(w) - (-, p, -)=w(r) A (¥fEdomp).
live(e, f,11,©) = live(snd p(f)), =))



[D-Const] [D-Assign-1 [D-Assign-2
(11, @, o) [e] — (II1,w1,01) [e1] (T4, 1) = upd(Il, @, w, v)
(I, @, o) [k] — (I, @, o) [(S, k)] (II, @, o) [w=e] — (1, @1, 01) [w=ei] (I, @, o) [w = v]— (II1, w1, o) [(S, ()]

[D-Var-FD] |[D-Disposé [D-RelA
(I, w1, v) = read(Il, w, w) (14, w1, 01) = dispMI1, @, o, v) (I1, @, o) [e] — (II1,w1,01) [e1]
(IL, @, o) [w] = (Il1, @1, 0) [v] (I, @,0)[v.dispose()]— (II1, @1, 01) [(S, ()] (IL, @, o) [rela(b, k, e)]— (Il1, w1, 01) [rela(b, k,e1)]
[D-Blk-1] [D-Blk-2]
(I1, @, o) [e1] — (Il1,w1,01) [é1] I, = ex(Il, Ay, v,v) o1 =decMo, {(S,1)})
(I, @, o) [tv =e1; ex] — (II1, w1, 01) [tv = €15 e2] (I, w, o) [T(u*)@A¢ v = v; e2] — (II1,w,01) [ret(v,[], e2)]
[D-Ret-1 [D-Ret-2 [D-Ret-3]
eret(L (1) (w,0) o] = (i, w1, 01) [e1] p2 =] M = {0} o1 = 0w{(S,b+h)}
(11, @, o) [ret(v*, p,e)] (I, @, o) [ret(vy, p1,Tet(vy, p2,e))] (IT, w, o) [ret(v™, p,rela(b, k,v))]
— (II1, w1, 01) [ret(v™, p, e1)] — (I1, @, o) [ret(vi+v3, p1, €)] — (II1,w,01) [V]
[D-If-true ] [D-If-false
II(v) = (A, true) II(v) = (A, false)
(IT, w, o) [if v thene; else ez]— (II, w, o) [e1] (IT, w, o) [if v thene; else ez]— (II, w, o) [e2]
) [D-IMI | & [D-TIM ] [D-SMI] & [D-TSM]
R )—(Aq|fmn(f1'Dl,...,fp'[)p)where-~~{e})€c(n*> F (¢ mn(t1 01, ...,%p Op) where --- {e}) € P
A, =ann(t;) (A, 6;) =II(v;) Vi€ {1..p} . (Ao, 80) = II(vo) A = ann(?;) (A, 8;) = TI(v;) Vi € {1..p}
distinctd; | ¢ € 0..p, 6; # null, A; € {U, LA},Ai =1] Iy=II distincs; | i € 1..p, 5; # null, A; € {U,L},A; = L]
v = this  (Ij+1, pirr) = updVEII;, 0;, A;,v;) Vi € {0..p} Mo=I1 (IL;, p;) = updVETIL;_1, 0;, A, v;) Vi € {1..p}
o = newframéIlp. )+ U?;ll pi I = newframéIl, )+ US_, ps
My = newlrameye—{u” )+ S, pi o0 = {(S,p+3)} My = newlrameTlge—{u” D+ U, pi 00 = {(S,p+2)}
o1 =decMo, 0¢) o2 = decMoW{(S,b+k)}, 00) o1 =decMo, 0¢) o2 = decMoW{(S,b+k)}, 00)
<H7 w, U) ['Uf)'mr('ul«»:D)](_> <H017 w, Ul) [ret({)f)upv [ﬁiHvi]&ov e)] <H7 w, U> [mr(vlup)] — <H017 w, Ul) [ret({)l»«?’v [ﬁiHvi]&lv e)]
(I, w, o) [ret(u”, p,relp (b, k, vo.mn(v1..5)))] (I, @, o) [ret(u”, p, relp (b, k, Mn(v1. p)))]
— (g, @, 02) [ret(Po..p, [0ivilly, )] — (Ilg, w, 02) [ret(d1..p, [Dirvi]ly, €)]
[D-SMI-Prim ] [D-New]
AF Emn((f}”;)l__p) where ¢pr; Ppo; €c; € € P fdList(c(n*)) = ([rs(m™) @ filP_,, &
S A =amn(ti) (AL 6) = TH(vy) Vi=1.p (11, pil) (:<upd>\)/E(HE1[., j<1 [ﬁ?—»s]Ai.,]éf)l,' ie)l..p
distinctd; | i € 1..p, 6; # null,A; € {U,L}, A; = L] r* = fresh) n = (c(r*),U"_, ps)
Ho=II (II;, p;) = updVEIL; _1, 95, Ai,vs) Vi € {1..p} L =fresh) wi = wt{1—n}
(w1, v) = callPrim(mn, [(A1, 61), ..., (Ap, 0p)], @) o1 = decMo, {(c,1)})
(Ily, @, o) [Mn(v1,..., vp)] — (I, w1, 0) [V] (Ilp, @, o) [newc(vi..p)] — (Ip, w1, 01) [(U,¢)]
read(I1, @, v) = ext(II, A, v, (A 6)) =
(A, 0) = II(v); if (A Lq A) throwErr-Alias ;
if A € {Up,L} throwErr-Alias ; I+ {v—(A, ) };

([0 Up]A,6) /2], @, (A, 6)); APV, w, 0, v) —

(A, 8) = T1(v);

readTl, @, v. f) = if 5 = null throw Err-Null ;

|(fp).{(2 ITDr{rE:g\;v Err-Alias : if A # U throw Err-Alias ;

if & — null throw Err-Null 5 Iy = II[(Up, 6)/v]; (¢, py, ps) = w(6);
(As,67) = w(6)(f); (Ily, @ =4, ow{(c, 1)})

ifAy =Up throw Err-Alias ; decMoy,02) =

(IT, w[([U— Up)As,65) /6. f], ([R — S]Af, d¢)); if =((o1—02)30) throw Err-Mem ; (o1 —02)

updVEIL, vy, Ay, v) =

upd(IT, @, v, (As, 85)) = P (55753) = H(z;);
(A, 6) = II(v); i if (As=Up)V(AsLaAr) throwErr-Alias ;
if (A=L)V((As £a A)) throwErr-Alias ; p = if (A;#L)A(As=U) then[U — Up] else[];
(I[([Up + VA, 65)/v], @); p1 = if (Av=L)A(A,=S) then[L — 8] else[];

UL, 0. (L)) (IT{(pAs. 3. /0], {ve—(p1Ar. )} )

(A, 8) = I(v); callPrim(mn, [vy, .. ., vpl, @) =
ifA=Up throwErr-Alias ; (w1, v, flag) = primOp(mn, 1, . . ., vpl, @);
if & = null throw Err-Null ; if flag = false throwErr-Prim ; (w1, v)

(Ag,05) = Flds(w(5))(f); _
if (Ay =R)V(As £a Ay) throwErr-Alias ;
(I, updSizés, IT, w|[([Up +— U]Af,85)/6.1]));

Figure 7. Dynamic Semantics




Note thatlive(t, f, I, ©) =4 ~(Jvedom(Il)-I(v)=(-, L)\ v.fEO),
while snd(A, 8)) =4 6.
DEeFINITION 2 (Alias Consistency)The alias consistency rela-
tion between static and dynamic semantics is defined asvillo
dom(II) = dom(I') dom(zw) = dom(%)
Vo € domT) - (v € © = ann(Il(v)) <q ann(I'(v)))
V. € domw) - p = Flds(w(t)) AVf € dom(p) -
(lve(s, £,11,0) = ann(p(f)) <a ann-fd(c), £))
O Fnobang (IT, @) Ve € locs(e) -« € dom(w)
I8 OF AL w)
Note thatann-fdc(u*), f) =q¢ A, Where(r(m*)@ f) € c¢(n*). We
uselocsto collect all intermediate locations appearing:in
locs(e) =45 casee of
L

- {4

ret(v*, p,e) | w=e|rely(ki,ka,e)

| relp(ki,ka,e) | (tv=re;e2) — locs(e)
if v then e; else eg | v.dispose()
| k| w | newc*) | [v.Jmnv™*) - 0

The following theorem states that no-dangling propertyrés p
served (together with other alias consistency propertiesing
evaluation of well-typed expressions.

THEOREM1 (No-Dangling).If
I';3; 0 F erase$e) :: t,01
I8 OF AL w)
<H, w, 0’> [6] — <H1,wl, 0’1> [61]
then there exist., ©., andx, D X, such that
I' — diff(e,e1) = Do — diff(e1, €)
Fa;Xa;Oq - eraseber) :: t, 01
Ta;Xa;O0a }:A<H17 W1>

Note thaterase$e) denotes the expression obtained by erasing all

size annotations from. Functiondiff(e,e;) returns a list of local
variables that appears irbut note; :

diff(e,e1) =q¢ let st = local(e)
Istl = local(er)
n = length(lst) — length(lst1)

in  (take(n,lst) <n >0 [])
take(n, Ist) =45 ([] < n<0 > [hd(lst)]+take(n—1, t(lst)))
Functionlocal(e) returns a list of sets of local variables. Itis defined
as follows:
local(e) =45 casee of

ret(v*,p, e) — local(e)+ [{v*}]
w=e |rely(k1,ka,e)|relp(ki,ka,e) — local(e)
(tv=-ei;e2) — local(er)
if vthenejelsees |6 |w
| new c(v*) | [v.Jmn(w*) | v.dispose() — ]

Note thatl' — [] =4 I', T — ([s]-++ S) =q4f (I —5) — S.

Proof: By induction over the depth of alias-type derivation for ex-
pressiorerase$e). Details are given in the Appendix. m|

Before presenting our main theorem, we define the overafi-

sistency relatiorbetween static and dynamic semantics as follows.

DEFINITION 3 (Consistency Relation).
I35 O A(I1, @)
Do = prim&(U ,colZ [T Fw::t, ¢, Z})
Vv € domT) - A, = siz€I'(v), II(v), @)
X = (V(A) — prime(V(I"))) U De
A = /\/uedon"(F)Av Ag = 3X-A AFocIdT
;3,A;0;Y E (I, w, 0)

In the above,size computes the size of a run-time value, and
presents it in constraint form. It is defined as follows:

Sizdint<’f‘>, (A7 k)7w) =df (T/ = k)

sizgbool(r), (A, k), @) =g (r' = (1 <k = true > 0))

sizeen(r*), (A, 1), @) =¢r let (en(n1.p), ps) = w(1)

p = getSizé, w)
in ALy {ri = (pni)}
siz€t, (A, - ), w) =4 True

getSize:: (Locationx Store — (SV —fi int)
getSizé., w) = getSizels, w, [¢])
getSizels, @, activeLs) =
fdList(cn(n1..q)) = ([7: (m’i)@\i fili—1,0);
(en{r1..q), {fi = (Ai,6:)}i_q) = @ (1);
p=1;
po=1{ni—riti=1..q;
foralli =1,..,p
if (; =int) p={m; — &} Wp;
if (r; =bool) p={m;—1<0; =true> 0} p;
if (r; = float | void) p= {m; — 0} Wp;
if (member(d;, activeLs}) p= {m; — 0} wp
else{ p1 = getSizely;, w, add(é;, activeLs});
p = p14p}

W{(pni) = (pai) | ¢ = Ni=1..q(ni = a;)}

The following main theorem states that each well-typed expr
sion preserves its type under reduction with a runtime enwirent
and a store which are consistent with the compile-time @unt
parts. Furthermore, the final size constraint is consiséifit the
value obtained on termination.

We usel; 3, A;0; Y et t, A1, 01, Y1 to represent the overall
type judgement. That is,

T';3; 0+ erase$e) :: erase$t), 01 I''E; AT Fent, A, Ty
8 A0, Y Fe s t,A1,01, T

THEOREM2 (Preservation).
(a) (Expression) If
i8N0, Y Fet,A1,01, 7
;3;,A;0;Y E (I, w, 0)
(II,w, o) [e] — (II1,w1,01) [e1]
then there exist, O 3, s, Aa, Oa, and Y., such that
I' — diff(e,e1) = Do — diff(e1, €)
Ta; Xa;A0;00; Yo bFep it,A1,01, T
Fa;Xa;Aa;Oa; Yo = (I, w1,01) -
(b) (Value) If
D;30;,0; T H(A)6) 2 t,A1,01;7
;3,A;0;Y E (I, w, 0)
then the following holds:
0 =0
Pt {1} 582,013 Vo = (T + {z— (4,0)}, @, 01)
wherez = fresh) , Az = [v — V'], ey A1, and
To="1w{(S, D}, o1 =cw{S, 1)}

Proof: By induction over the depth of type derivation for expres-
sione. Details are given in the Appendix. a

The second safety theorem on progress captures the fact that

well-typed programs cannot go wrong. Specifically, thisotieen
guarantees that no memory adequacy errors (denoted-em )
are ever encountered for well-typedeMJ programs, as follows:

THEOREM3 (Progress)If
T38;0;0;TFent,A1,01, Y1 and I3, A;0; Y = (11, w, o),



then eithere is a value, or(I1, w, o) [e] — Err-Null , or there exist
Iy, w1,01, €1 such that{l‘[, w, 0’> [8] — <H1,wl, 0’1> [81].

Proof: By induction over the depth of type derivation for expres-
sione. Details are given in the Appendix. m|

8. Memory Inference

The goal of memory inference is to derive heap usage effects f
each method. We provide a summary-based approach thatleonsi
ers each set of strongly-connected methods (bottoms-gy)diat
inference through the following steps:

e Calculate symbolic program state, build constraint abtita
and collect memory adequacy constraints.

e Solve constraint abstraction using fixpoint analysis.
e Derive memory availability.
e Derive memory requirement.

Formally, the type inference rule for expression has thefor
A Y Rent,A,q,®

where type environment maps variables to their annotated types,
Y(T;) are memory available before and after evaluatior,ak-
spectively,A(A;) are the symbolic program states before and after
evaluation of expressios respectively. ® is a set of(A, ¢) pairs
wherey is the constraint that enforces memory adequacy/aisl
the program state where was generated. We carry the program
state along to allow memory requirement to be accurateliveldr
and suitably simplified.

The inference rule for methods has the following form:

I' Fmethmeth— meth | ©

whereT is empty for static methods dr contains a singlenis
entry for instance methods. The methadth is the transformed
version ofmethwhere memory effects annotations are added. The
constraint abstractio@ captures the relations between the sizes of
the method'’s parameters and its memory effects.

In our approach, we compute memory availability in a forward
manner, taking into account conditional paths and the mgicmn-
sumption/release for each subexpression. Simultangouslylso
gather memory requirement in a backward manner by expgessin

precondition. Disjunction is used to help capture memofgat$
accurately, where possible.

8.2 Fixpoint Analysis

For each recursive method, we construct a constraint alisina
that relates the sizes of the input parameters, the amoumgiwiory
available at the beginning of the method to the sizes of tharpe-

ters and the amount of memory available prior to the recarsall.

This one-step relation is subjected to a fixpoint procedoireom-

pute its multi-step relation. Let(n*, m*, 72", m") be the one-step
relation. The fixpoint computation is formulated below withand

m™ being the sizes of the input parameters and memory available
at the beginning, whereas andm™ are those of the recursive call.

Ln*,m*, 2%, ") = I{n*, m*, &%, ")
L (n*,m*, 7%, m*) = Li{n®, m*, 2%, m*)V
3”67m6 : Ii<n87m67ﬁ*7m*> A I<n*7m*7n67m3>

For the computation to converge, we may need to apply stendar
techniques such as hulling and widening [15].

For example, consider the following one-step relation far t
moverec2nethod from Sec 4.

moverec2a, b, p,m, a, b, p, i) =
a=aNb=b+1Ap=p—1Am=m—1

Following fix-point analysis, we obtain:

moverec2a, b, p, m, , b, p, 1)
a=aAp—p=b—bAT=m+p—pAb<b

From this, our inference can derive both the expected memory
requirement and memory availability.

9. Implementation

We have constructed a type checker foei, and have also
built a preprocessor to allow a more expressive languagesto b
accepted. The entire prototype was built using the Glasgaskel!
compiler[29] where we have added a library (based on [30]) fo
Presburger arithmetic constraint-solving.

The main objective of our initial experiments is to show that
our memory usage specification mechanism is expressivehand t
such an advanced form of type checking is viable. We conterte

the safety of each consumption in terms of a memory adequacyto MemJ a set of programs from the Java version of the Olden

constraint on the original parameters. As stated, we caphese
two pieces of information as a pdin, ¢) for each program point
where a memory consumption is required. Full details of nrgmo
inference system and its implementation is described ih [2&his
paper, we highlight key features of our memory inferenceesys

8.1 Deriving Memory Requirements

We can convert each memory adequacy constrainto a memory
requirement by the following formul@re = A ~>y(, », WhereA
is the symbolic state at the program point wherie generated. We
may then projecpre as a formula of the method’s parametersas
follows:

VYW - pre where W=V(pre)—U
This projection effectively eliminates all free size vélizs in a
formulae¢ by means of universal quantification, except for those
specified inU. For example, consider:

f(n) = if n < 0 then allocate 3 Objects

else allocate 2 Objects f(n — 1)

Using our inference method, we can derive a memory require-
ment {(0bject, d)} for this method, together with the constraint
(n<0Ad=3)V(n>0Ad=2n+3) that will be added to the method’s

benchmark suite [8] and another set of smaller programs from
the RegJava benchmark[14], before subjecting them to memor
adequacy checking.

Figure 8 summarises the statistics obtained for each progra
that we have verified via our type checker. Column 3 illussahe
size and memory annotation overheads which must be made in th
header declarations of each class and method. Columns 4 and 5
highlight the CPU times used (in seconds) for alias and mgmor
checking, respectively. Our experiments were done undeh&e
Linux 9.0 platform on Pentium 2.4 GHz with 768MB main mem-
ory. Except for theverimeterprogram (which has more conditionals
from using a quadtree data structure), all programs takeruhd
seconds to verify, despite them being of moderate sizes. tWe a
tribute this to the fact that memory declarations are vetifirea
modular fashion for each method definition. We achieve tespie
our reliance on Presburger arithmetic whose worst casedone
plexity is exponential in the size of formula being solvetieTast
column highlights the number of methods that have been ssece
fully verified as using memory spaces that are bounded by slfmb
Presburger formula@ckermannfunction couldnot be so bounded,
as it requires a stack space that is exponential in the siite afig-
inal input. A function invoronoi also has an allocation inside a loop



Programs Size (lines) Checking (in sec.)] Verified
Source | Ann. | Alias | Memory | Methods
bisort 340 7 0.01 2.56 6/6
em3d 462 19 0.05 1.14 20/20
health 562 22 0.05 6.37 15/15
mst 473 31 0.02 1.26 22/22
power 765 24 0.06 4.28 19/19
treeadd 195 6 0.02 0.32 4/4
tsp 545 10 0.02 3.54 9/9
perimeter 745 12 0.02 21.81 8/8
n-body 1128 31 0.60 1.25 22/22
\oronoi 1000 45 0.03 3.51 39/40
stack 122 12 0.01 0.08 10/10
sieve 88 7 0.01 0.09 6/6
m-sort 183 13 0.01 0.36 12/12
life 164 9 0.02 2.95 717
Ackermann 15 1 0.01 0.17 0/1
Mandelbrot 194 11 0.01 1.72 10/10
Reynolds3 98 6 0.01 0.18 4/4

Figure 8. Type Checking Experimental Results

that couldnot be bounded by our system. This is due to a com-
plex termination condition used that could not be captuseBies-
burger arithmetic. We have also conducted memory inferemce
our benchmark programs. The current prototype inferenstesy
takes between 4 to 10 times longer than the type-checkirtgrays
We have also conducted a set of experimental results toaealu
on the effectiveness of memory inference, in conjunctiomhwi
our explicit memory recovery scheme. We modified IBM’s Jikes
RVM][2, 25] to provide support for explicit dispose operatiand
instrumented its memory system to capture total allocgidand
actual high watermark (b). We then compare it against thei gted
memory requirement (a) from our memory inference. We cdumt t
number of objects created and reused. As can be seenin Fig 9, o
memory inference is accurate for four out of the five progrénos
the RegJava benchmark. We are conservative on Reynoldsprog
as one of its memory requirementlig(n) which is approximated
to n in the Presburger constraint. Alternatively, if the depttree
had been used as a parameter, our inference would also hseprec
on the Reynolds example. Except fdeve most of the programs
have high degree of memory reuse which were facilitated by ou
use of thadisposeoperation for explicit memory recovery.

10. Related Work

Past research on improving memory models for object-agbnt
paradigm has focused largely on efficiency, minimizatiord an
safety. We are unaware of any prior work on analysing heap-mem
ory usage by OO programs for the purpose of checking for mgmor
adequacy. The closest related work on memory adequacy sed ba
on first-order functional paradigm, where data structuresrastly
immutable and thus easier to handle. We shall review twontece
works in this area before discussing other complimentamks/o

Hughes and Pareto [24] proposed a type and effect system

on space usage estimation for a first-order functional lagguex-
tended with region language constructs of Tofte and Ta3[8d].
Their sized-region type system maintains upper bounds en th
height of the run-time stack, and on the memory used by region
The use of region model facilitates recovery of heap spaoa-H
ever, as each region is only deleted when all its objectsrheco

tional programs. A key feature of their solution is the uséragar
typing which allows the space of each last-use data corstr(ar
record) to be directly recycled by a matching allocationthfhis
approach, memory recovery can be supported within each func
tion, but not across functions unless the dead data stestnme
explicitly passed. (For example, they cannot handlerih@rec
andemptyStack methods since these methods require space reuse
across functions.) Moreover, their model does not tracksghe-
bolic sizes of data structures. Nevertheless, one signtfied-
vance of their work is an inference mechanism for memory ef-
fects through linear programming (LP) technique. This téghe

is similar to the derivation framework proposed by Rugina an
Rinard[32] for inferring symbolic bounds. The main advayetaf
LP technique is that no fix-point analysis is required. Hosveit
restricts the expected memory effects to a linear form witfuts-
junction.

In support of component-based software, Krone et.al. [26] p
posed an approach to modular verification of performancee(ti
and space) constraints using pre and post contracts. Hovtlegi
framework appears to be at a preliminary stage as neitheman
plementation nor a specific verification technology has been
ported. Recently, there have also been several works ogsamgl
the stack space requirement for interrupt-driven progrdngdow
et.al. [7] proposed a stack size analysis using contegtfeach-
ability algorithm based on model checking. Chatterjeel.€fl8]
investigated the complexity on the stack boundedness gamobhd
the exact maximum stack size problem. Regehr et.al. [31jrcdd
previous work with a more accurate context-sensitive absinter-
pretation and also advocated for function inlining to reslstack
depth. These techniques apply to a class of interruptdnve-
grams but are neither applicable to recursive programsaibiose
whose stacks depend on some loop bounds.

Other related works on improving memory models are re-
viewed here. Chen et. al. [11] reported the use of heap canpre
sion techniques to support memory-constrained Java apiolis.
They proposed a set of memory management strategies and as-
sociated garbage collection algorithms to reduce heappiioot
of embedded Java applications that execute under severe mem
ory constraints. The key techniques employed are objecpoesn
sion, lazy allocation and object break-down. On a set of eluibeé
Java applications, they reported noticeable reductioreaptspace
requirement, while performance degradations are fairlplsim
most cases. Berger, Zorn and Mckinley [4] generalized regand
heaps, by allowing programmers to delete individual olsj@dtile
keeping the high performance of regions. They showed that th
approach can reduce memory consumption significantly. ¥aman
and Rinard [3] presented a set of techniques for reducingére-
ory consumption of object-oriented programs, by optingzin the
representation of object fields.

These recent works on optimizing memory systems are com-
plimentary to our current efforts on analysing memory us#ge
a matter of fact, we have considered how the present worldcoul
be applied to region-based memory management system[$2]. A
already confirmed by others[21, 4], we expect noticeabléoper
mance improvements when regions are size bounded withcéxpli
recovery. In the opposite direction, we expect region-tdaystem
to further provide timely recovery for shared objects thatehbe-
come dead, providing us with tighter memory bounds.

11. Concluding Remarks

dead, more memory than necessary may be used, as reported byVe have proposed a memory usage type system for a non-trivial

[4]. Stack usage has been modelled in Hughes and Paretds wor
but tail-call optimization is not supported.

More recently, Hofmann and Jost [23] proposed a solution to
obtain linear bounds on the heap space usage of first-order fu

object-oriented core language. We have designed a flexplelefs
cation mechanism to allow memory needs of user programs to be
declared abstractly, and then verifies if memory adequaayesty
holds for the given definitions. Our approach requires he@ge



Program Input Size | Prediction (a)| Actual (b) | Allocation (c) | Reuse (b/c)| Accuracy (b/a)
sieve 10000 10000 9999 10000 0.9999 0.9999
m-sort 10000 20000 20000 287232 0.0696 1.0000

life 1000 2 2 1000 0.0020 1.0000
Mandelbrot 100 4 4 83692 0.00005 1.0000
Reynolds 10000 40000 20014 40000 0.5004 0.5004

Figure 9. Experimental Results on Memory Prediction and Recovery

to be explicitly deallocated, which can be handled autoradsi.
We have also built a prototype type checker to confirm theilviab
ity and practicality of our approach. We envision our frarmew

to be useful for embedded system, where memory is considered

be a critical resource. We also envision the synergy of peddé

memory bounds with region-based memory management systems

In particular, bounded memory regions can result in betbefop-
mance. Synergistically, region-based system can proiricsyt re-
covery for shared objects that are dead, providing us wahteir
memory bounds.
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APPENDIX where d = n;r=n+1; {(Tree, 1), (S,d+5)},{}
. . if isNull(t) th T 11, null
12. Alias Checking Rules (af Leli( ()i,lf;‘)ni"t ree(v, mill, mull)
The set of alias checking rules are given in Fig. 10. if v <ithenl = insert(l,v)
The auxiliary relatior® + consumelw, A), ©; (named hux1]) elser = insert(r, v);

addsw to thedead setif A is unique. This relation ensures that t

uniqueness is not consumed twice, and that each objectsafiel d
are not both dead at the same time. These requirements preven, o
aliases from occurring for unique objects.

The rules for object creation and method call must ensurte tha

Take note that we are able to predict that the size of the butpu
e is one more than its input. If we had used the followindeco
without thebind construct, our type system can only verify a less
precise specification.

U-mode parameters consume uniqueness, andLthabde para- Tree(r)@ insert(Tree (n)@ t, int(v)@ v)
meters adhere to the lent-once policy. In addition, it must e where true; true; {(Tree, 1), (S,d + 5)}, {}
sure that each unique object meets the field uniquenessi-invar {if isNull(t) then new Tree(v,null,null)

ant requirement before being passed into a method. Theorelat else {if v < i then t.left = insert(t.left,v)
O, A F conUl(v,ts,tr),O1,A1 (named huxz]) helps ensure the else t.right = insert(t.right, v);
above. It checks that each variables neither lent twice, nor has its t}

uniqueness consumed twice. Note thataptures unique variables
which are temporarily lent out. In addition, fields of suchigrae-
ters must not be in the dead-set.

We are currently investigating techniques for the autoenati
sertion ofbind construct into MEMJ programs.

13. Other Language Features

Our implementation also supports several other languagjeries, 14.  Proofs

including downcast,while-loop and a field-binding construct. ~ The proofs for Theorem 1 and Theorem 2 require a lemma, called

Their alias checking and sized-type rules are shown in Eigar assumption weakening lemnthat states that the static judgment
For the downcast operation, we allow both the class typetand i  remains valid despite a variation of its assumption. Thiiames

alias annotation to be changed. Run-time test can then lietose  the store types to have unbounded mapping of locations to types.

ascertain the validity of each downcast request. However, the type environmenttakes the form of stackable map-
We also provide direct support famile-loop construct. The  ping between variables and types, and is allowed to grow (isfp
reason for doing so is that tail-recursion is not able to faodr- ing in new mappings) and shrink (by popping out mappings from
tain loops due to the use of the pass-by-value parameteranech Sstack). The lemma states that such change to type envirdmmeen
nism. Our solution is to analyse eaghile loop using its corre-  serves the type judgment, if the change are properly canstfa

sponding tail-recursive function but with two deviationamely (i)
no stack frames are created (ii) use of pass-by-referenzamea
ter mechanism. We achieve this using a set of three rulesetham

LEMMA 1 (Assumption Weakening). Given that the following
judgments hold:

[WHILE-METH)], [WHILE—CALL] and (wHILE]. Take note that I';%; © - erasege) =: erase$t), ©1
each loop of form(while 1 do e3) is equivalent to amile-call DO AT et Ay, Ty
m(v1..,) With the following definition. Letr, andx, be such that:

void ()@ M((t; vi)i:1..p) Where pr; dpo; €c; €r Va(A)CV(Ta)  V(E)AV(Ta) =0

{if e; then ep;M(v1..p) else ()}
To support precise size-tracking, we also provide a fiettthinig
construct which binds the fields of an unaliased object tot afse
local variables, as follows:

(vars(e) U{v|ve©VIf- -vfeO}) CdomTs)
F* - (T —{v*} =Ta)V (o —{v*} =T)
Ya2X
Then,

bind (vi..p) =vine . o
: . . oy 2as erase :: erasedt s
Such a construct allows the fields of an objetb be temporarily Lo Soi AT ,ﬁ): £ A, ?1) 1

lent-out to a set of local variable$y,..v,}, in the scope of the
expressiore. Any update to the local variables is considered as Note thatvars(e) returns all variables occurring i

an update to the corresponding field of the objeitself. Thebind Proof: By structural induction: the first judgement is based orsalia
construct is particularly important for objects whose simaperties checking rules, while the second is based on type rules with s
are built from more than one components, such asrtke class and memory analysis.
below.
class Tree(n) where n=1+a+b; n>0 { The proof of Theorem 2 also relies on the following lemma.

int(v) @ val;

Tree(a)@ left; LEMMA 2 (Redundant Memory)lf

Tree(b)@ right;

i3 ATHent, A1, Ty



[a:NULL] [A:PRIM]

[A:VAR-FD]
I'(w)=t A=annt) A#L © F consumeluw,A), O

I';0 F (¢)null :: c@, © T'; © F Eprim :: prim@, ©

[auxi]
(w=v.f)=Wg€OAV.f&O)
(w=v)= (Vg OAVYSf-v.f¢&O)

IOk w: [R+— S|t, 01

[auxz2]

As =ann(ts) Ap =ann(tr) Ftg <:tr
vg (OUA)AVS-v.f&O
d=({v}<As =UAAr ZL1>0)
g= {v}<Ar =LAAs € {L,U} >0)

O F consumelw,A),© U ({w} <A=U>0)

[A:NEW]
Ao =10 fd'ISt(C) = [tAl fz]le F(Ui):t‘ 1€l..p
©;-1; Aiq F conUL(v;, ¢4, [R — S]fqy), O;;A; i€1..p

—isParam(w) T'(w) =t ann(t)#R
(w=v.f)= (v¢oO)

O; A F conUl(v, tg,tr),®Ud;AUg

[A:ASSIGN]
[A:sUBT]
A1<,Ar F 11 <iT2

Hit <:t
IOkFe:t,01

;00 Fnewc(vi..p) 1 c@, O

;0 Fw=e:void@, O1\w i@\ <: To@\2

[suBTi] [suBT2] [suBT3

Fr<imo FTo<:iT3 class c1 extends ca {(t D1..m (Almeth. , }
Fr<iT 7 <73 Fec <:ica

[A:1F] [a:LocAL

T'(v) =bool@ I';OFe; ::t;,0; i =1,2
t:mSS(t1,t2) O3 =0, U0BO,

IiOFke; 161,010 Htp <:t
ann(t)  {L,R} T+ {v::t};01 F eo i t2,O02

I';© - if v thene; elsees :: ¢, O3

[A:DISPOSE
v g O ann(l'(v)) =U

[A:ELF]

v* CdomI) [0k e::t, O

[;0F (tv=-e1;e2)::t2,O2\v

[A:RELA]
I'Oke:t, 01

[A:RELB]
I'Oke:t, O

T'; © - v.dispose() :: void@, OU{v}

[A:sMmr
Emn((Z; 9:)in..p) [{e}] € P
Ao=0 T(v;)=t; i€l..p
©i1;Aig FconUl(v;, t;,8:),0:5A; i€1.p

T;© F ret(v*,p,e) :: t,01\{v*}

T;0Frela(bk,e)::t,01 T;0Frelp(bk,e)::t, O

(A1)
Altm((£; 9:)i1..p) {e} € ¢ R R
Ao=0 T(v;)=t; i€0..p to=c@ io=c@
©i1; A F conUl(v;, ti,£:), 03 A; i€0..p

;00 Fmn(vy,.p) i i, O,

[A:PROG
Faerdef,, i€ 1..p
0O Fmenmeth, i€ 1..q

[A:PMETH]

ann(tg) # L

;00 F vo.mn(vy, p) t, Op

[a:METH]
My =T+ {vi=t;})_; Tis0kext,©® Ft<:itg

ann(tp) #L Vi€ l.p-(ann(t;) =L) = (Vf-v;.f € ©)

Fp defi:l..p methrluq

[a:cLASS]

I Fmethto mn((t; vi)i1..p)

' Fmethto mn((t; vi)ia..p) {€}

def= class cj extends c2 {(t it.m (A meth)ia.p }

ann(t;) #L, i€ l.m

Vi € 1..p- {this: c@\;} Fonen, meth A
(V(A|meth € c2 - name(meth) = name(meth)
= F OverridesOKmeth, meth A A= A;)

[A:OVERRIDE]
meth = ¢t mn((t; vi)7—y) -
methy = ¢t mn((t; vi)iy) -

ngf def

[a:suBsi] : (Covariant)
IiOket,® ©7 C 0O

F OverridesOKmeth , meth)

[a:suBs2| : (Contravariant)
01 Fent,® ©2 C 0O

I'oke:t, 0

(v:t)el (v:c@A)er

IO ke t,®

(t f)efdlist(c) p= ([U—S] <A =581>]])

F(’U) =ar t

O\v =4s © = {v,v.f"}  O\v.f=aq ©— {v.f}

isParam(w)=,4y true < w is a parameter variable false

¢ = fdlist(cz)

_— 1 C tends C
fdlist(Object)=ar ] (classc, extends C;

O\({w} U S) =4 (O\w)\S

(b ), ) EP

D(v.f) =ar pt
A<qsA U<,L U<,S8
name(t mn(...)...) =g; Mn

anr(r(n*)@\) =df A

T <:T T2 <:T VT3 (71,72 <:T3=>T <:T3)
A1<aA Ax<qA VA5 - (A1, A2<, A3 A< A5)

fdlist(cr ) =az £4+[(t: f:)]P_,

mss{T1 @1, Ta@A2) =af T@A

Figure 10. Type Rules for Alias Checking




[consi| [cons2|
n™ = fresh() n = fresh()
DAY F (e)null :: e(n*)@, A A (n=0)*,7T DAY F AN int(n)@, A A (n=k), YT

[conss| [consa| [VAR-FD]
k=() | k" 7=(void <1 k=() > float) b = fresh) ¢=(b=1 <1 k"'=true > b=0) TFw:t ¢,Y
;A TYTHE::T()@, AT T A; Y F kDol s bool (bY@, AN ¢, Y ;A THw: [Re—Slt,ANP, T

[aAUux1b)]
F(tf)€cn®), ¢ m" =V(t)
[AUX1a] () =c(n )@ p1=(U—S]<A=5>]) [AUX2a)]
I(v) =t t; = fresh(t) a* =V(p) — (m*Un*) p=[(n— n')*]urenamét, t;) (¢, ¢) = fdList(c(uy.p))
¢ = equatéty, prime(t)) t1 = fresh(t) Y = p(dependén™, m™,¢)) ¢ = p(Ia* - ) (tf)et
kot o, V(t) TEo.f i (prt), pAiInv(tr), Vo (Y) E(tf) € clup),d

[aUux2b] [aux2c] [aux2d]
class c(n.p) extends .. { ..meth.} € P class ¢y (Ny.p) extends ca(Myg) - -+ {(tf)* (A; |meth)2, } €P P =...meth --
meth = freshmeth) p = [n;—u;]t_; F methe c2(urq) Vi € 1..p - name(meth # name(meth) meth = fresh(meth

F p(meth) € c(uy.p) F methe ¢y (u1p) - meth € P

[smi]
F (E mn((£; 9;)i:1..) where ¢pr; po; ec; er {e} ) € P
t =fresh(i) T(v;)=t; i€1l..p [LocaL
oty <: iy, pi 1€EL.D pp = Uip:1 pi A1 FYe. DAY Her i t1,A1, 71 t= fresl"(f)
p = renamét, t)Up, Uprime(pp) A R>y(ry IV(ec)UV(€r) p dpr 1ty <:prime(t),p X = V(t1)
Ay =Aor 3Y - p(dprAdpo) Y1 =T—(e.\{S}H)We, Y =V(t) UprimgV(t)) ATy J{(S,1)}
X=Ur_,V(t) Y=XuprimeX) L=U", V(t;) [, 63X p YA TI—{(S, 1)} F ea i ta, As, Yo

DAY FEmn(vg..p) o t, A1, I AN G (f'u =e1;e2) i t2, Y - Ag, Ty

[cLass| [PrROG]
Si=V(t;) i € Lom distinct{S1, ..., Sm, {n1..np}} V(or) C{ni}j_, 1, P = def” , metf’ , NoCircClasse&®) FieldsOncéP)
p>q ¢=Nlg(ni=a;) Vie {al.p} V() CUL, Si InstanceMethOnd®)  + InheritanceOKdef,) i € 1..m
Iy = {this:: c1(n1..p)@\i} T'iFmenmeth i€ l..r inv([t;]/2,)A =1 Foassdef, i€ 1.m  {} Fmemwmeth i€ 1..n
Fclass class ¢1(n1..p) extends co(n1..q) where ¢; pr{(t; fi)jmy, (Ai|meth);_, =P

[INHC] [OVERRIDE]|
def, = classcy(M.p) extends cz (N1 g) where - - - {fd* meth . ,} meth = ¢t mn((t; vi)i:1..p) where ¢pry; Ppoys €1ms €1n { -+ }
(3meth - methe ¢z (M.q) A name(meth) = name(meth)) methy = ¢t mn((¢; vi)i:1..p) where Ppro; Ppogs €2m; €2 {3}
=  OverridesOKmeth, meth ic1..p Ppry=>Ppry  Ppoy=>Ppo;  Ppry F €1mIeam  Ppry Feandein
F InheritanceOKdef, ) - OverridesOKmeth , meth )

[suBTi] [suBT2]
Velass(T(s1; -+ 8m)) = (S1,S7,-) pr=[ni—sils;es; class c1 (N1 p) extends ca(N1.q) - - - €P [M]
pr =[nirsils;esp Ai<aA2 p=(pr <AI=SVA=S > pspr) Foea(Mg @ <:cz(Mu)@sz, p meth=£mn(..) - --
Fom(s1,.,8m) @\ <: T(n1, . N ) @2, p Fei(mp@\ <:cz3(m )@z, p name(meth) =4 mn

[DEF-INV3|
[DEF-1INV1] [DEF-INV2] classCi(n1..q) extends Ca(n1.. ) where ¢o 5 pr{(t; fi)i_, ... } €P
7 = int | float | void | Object p1=inv(C2(N1..r)) p=[ni—nill_,
inv(bool(b))=4r0<b<1 inv(r(m*))=g4strue inv(C1(f1..q))=aré1A\(p é1))

[DEF —fdList2]
(f1 , D1 ):deiSI(Cz <ﬁ1 T>)

[DEF—fdList1] class Cy (n1..q) extends Ca(n1..,) where ¢o; dr{(t: fi)7_, ... } €P [DEF - Viield]
i = fresh(t;), i€l..p p = [ni—ng]7_ U UL_, renamét,, ;) Velass(7(s")) = (dr,dr,dnN)
fdList(Object())=ar ([], true) fdList(cy (1..q))=as (L1 +[(Es f)]7—1, d1A(p }2)) Viield((s*)@) =gy (dr,0,dr Udn)
[DEF—Viield] [DEF—Viield] [DEF—Vlasd
Velasd(7(s™)) = (d1,dr,dn) A€ {U,L} VasdT(s")) = (dr,dr,dn) T € prim
Viield(7(s*)@) =ay (0, dr,dr Udn) Viield(7(s*)@A) =gy (0,dr Udr,dnN) Velasd(7(n*)) =45 (n*,0,0)
[DEF—Vlasd [DEF —fresh—meth]
Vfield(ti):(dg-, dfy dév)-, i€ {l..p} meth= Emr() where ¢pr; Ppo; €c; €r{€}
([ts fil?_y, @) = fdList(c1 (n1..4)) nr=dependéni. .q, UP_, df, ¢)  {s1,..,8p} = V(ec)UV(er) ur.p=fresh) p=[si—uill_;
nr=dependéni..q, Ule d;‘T7 ¢) nn=dependéni. 4, Uipzl d§v7 ) éc=pec €r=per Gpr=pdpr Ppo=p Ppo
Veass(c1(ni..q)) =af (nr—(nrUny),nr—nn,nN) fresh(meth) =4 £ mn(..) where dpr; Ppo; éc; ér{e}

dependén”, s*, ¢) =ar | J{nl(n = a) € ¢, (V(a) Ns") # 0}

Figure 11. Other Type Rules for Memory Checking




[BIND]

I(v) =c(n*)@A s* =fresh) fdList(c(s*)) = ([(t; fi)]}_1. )
p = [s—n/]*UUY_, renamét;, prime(t;)) A1 = AA(p ¢)AINV(T'1)
Ty ={v = ti}g’zl T—{v}Ul'1; A3 T Fent, Ao, Ty
Az = Ay Ofn*} pod Y = Ule V(t;) Z =Y UprimeY)

[A:BIND]
I'(v) =c@A A#s fdlist(c) = [(t; fi)]b_;
i =T—{v}u{v; = t;}0_, v¢ OAVf-v.f¢O
I';0kFet,®1 Viel.p v, Q 01 /\Vf-Ui.f¢@1

T;A; T F (bind (vi..p) =wvine) :: t,3Z2 - A3, Ty

[casT]
AT Hest, A,y
to =fresht) Z =V(t1) ¢ = equatéis,tq)

m = fresh()
Fwhile M((t; vi)i:1..p) where ¢pr; gpo; €c; er {e1, €2}

;0 F (bind (v1..p) =vine)::¢,O1

(WHILE

DAY Em(vyp) mt, AL T t=void()@

DAY (8) e te,3Z - AAp, T1

(WHILE-METH]
T'={v1:t1,.,vp tp} A =noX(T)AdprAinv(T)
T'; Ajec - if ey then ea;m(vy..p) else () :: void()@, A1, Ty
Abe, 30 ¢prAAL F Y1 Jep Abeedd
A1 = p(fpo) Ti(S) =ee(S) e(5)=0

T A; Y - while eg do e [(¢; vi)g’:l, Opr; Ppo; €c; €r) 1t A1, Ty

= puUprime(p)
L=UI_ V(t:) A1 =Aop p(dprAgpo)

[WHILE-CALL
Fwhile M((£; ©i)i:1..p) where dpr; ppo; €c; er {e1, €2}
I(vi) =ti, i€l.p p=U"_, renaméi;, ¢;)
A FYdee Ar>pIV(ee)UV(er)-p dpr
T ="T—(e/{S})Wer

Fwhile M((£; vi)i:1..p) where dpr; dpo; €c; € {e1,e2}

[a:cAasT
I'Oke:t;,01

IOk e ::bool@,0 I';0F ez ::void@, O

T;A; T Fm(vy.p) : void()@, Ay, Ty

[A:-WHILE]

0k () e t,©1

I'; © - while e1 do €2 :: void (@, ©

Figure 12. Type Rules for Other Language Features

andA F e J 0, then
D3 A YwWe e t, Aq, T We

Proof: By structural induction on. a

14.1 Proof of Theorem 1

By induction over the depth of the type derivation of aliasaling
for expressiorerase$e).

Case[a:var-FD]. Letl', =T, %, = ¥, ande, = ©;. Then the
type preservation is straightforward. For alias consistewe
specifically need to show the consistency of aliases forethos
references not i®,. These are consistency because1jf
notincluded ine,, does not change its alias annotation during
the reduction step (as shown in the functieadin dynamic se-
mantics); (2) for other variables, their alias annotatiemains
intact during this reduction; (3) the no-dangling propehdy
I1;,o01 IS preserved as no live locations are deleted from the
store, while the result value) is live.

Case[a:assieN]. We deal with expression = e. There are two
rules by which one step evaluation can be conducted:

Subcase p-Assign-1 By induction hypothesis, there exist

Case[a:smi]. We deal with expressiomn(vy, ..,

reduction, then its annotation remains the same after tieafLc
Thus, the alias consistencyofis guaranteed from the premise.
The no-dangling property is preserved as no live locatiomg, i

or ww; are removed from the store. While the target expression
is a primitive.

Case[a:NEw]. We deal with expressiofiew c(v1..,). We choose

Ty =T, %0 = X U {t—c@}, ande, = 6,. The proof follows.

Case[a:1mi]. Given thatl’; 3; ©¢ F vo.mn(v1. ) = £,0,, and

(I, @, o) [vo.mMN(v1..p)]— (11, @, 01) [ret(do..p, p, e)]. We need
to show there exist,, Xn, O, such thal'o; Xo; Oa =4 111, @),
andTo; Ya; Oa - ret(to. p, p,e) : £,0p. Lt o =%, 0,=0,,
andl'y = (I, 98 == fo, ..., 9% = p)), wheregq is the new stack
frame number. The alias consistency is ensured by the definit
of updvVEand the respective premise. Since no variables/fields
in ©¢ will be used by the method body checking the method
body only involves formal paramete¢s?)*. Thus, we obtain
Ta;Ya;04 Fe:t,0,UB,, Where®,, is derived from the
rule [a:meTH], andO©ys C {v{_,}. From the rulga:eLr], we
obtainTa; Xa; Oa - ret(do. p,p,e) :: £, Oq.

vp). There are
two subcasegb-mi| and[D-Mi-prim ]. The proof is similar to the
case h:1wmi).

Case[a:LocaL]. We deal with expressiohv = e1;es. There are

I'a,Ya, ande,, that preserve the type ef andl'a; Xa; ©a =4 (111, @1). two rules by which one step evaluation can be conducted:

By applying the rulga:assicn], we obtain the type preserva-
tion forw = ej.

Subcase p-Assign-7 Here, e is some value = (As, 6s). From
dynamic semantics, we obtajfl;, w1 ) = updIl, @, w,v). Let
I'a =T, 3o = 3%, ande, = ©/w. The type preservation is ob-

vious. To show the alias consistency for those referencées no
in ©/w, we just need to check the alias annotation associated

with w, which may have just been removed framIf w ¢ ©,
then the conformance is guaranteed from the premiseclfo,
then there are two cases: (1) if (the value associated witigs
an annotatiow before reduction, then it has annotatioaf-
ter reduction, which is less than any static-annotatiom Gt
compile-time; (2) ifw has an annotation other thap before

Subcase p-Blk-1] By induction hypothesis and the assumption
weakening lemma.

Subcasep-Blk-2] By induction hypothesis and the ryle:eL¥].

Case[a:1r]. Both the subcasef-if-true] and [D-If-false] can be

easily proven by the induction hypothesis and the covaeanc
subsumption rul¢a:sussi].

Case[a:pispose]. We deal with expression.dispose(). Let

'y =T, 3o =3, andO©, = 6u{v}. The type preservation is
trivial. After the reduction step @ Disposq), 1 = w—4, while

I, = [(Up,d)/v]. Although ¢ is deleted from the store, is
moved to®, correspondingly, while other references keep un-



changed. Thus the no-dangling property and other aliassons

tency properties are obviously preserved.

Case[a:rELA]. The only possible reduction step 3-Rela]. The
proof follows by induction hypothesis.

Case[a:eLr].We deal with expressiofet (v*, p, e). There are five
rules by which one step evaluation can be conducted:

Subcase p-ret-1] By induction hypothesis.
Subcasep-ret-2] Letl'y =T, £, = ¥, andO, = ©. The proof
follows immediately.
Subcase p-ret-3] By rule [a:rELA] and [a:ELF].
Subcase p-Tim] The proof is similar to that for the case
[A:1vi].
Subcase p-Tsm] The proof is similar to that for the case
[A:smi].

|

14.2  Proof of Theorem 2

(a) By induction over the depth of the type derivation of sirel
memory analysis for expressienIn each of the following cases,

GprAATL Y1 Jew{(S,Y1(S))} from [METH]. Thus we have
(i)pﬂ\Al = Tl&J(Ta—e)

=T1WY —e,

T e, w{(S, T1(S)) T —ec

=e,W{(S, €c(S)) WY —e.

=Y (ec/{5})er

=T,
By Lemma 2 and rul¢suBsi], we have
Ta;Ya;Aa; Yo Fet,Aop Ay, To. By the rule[enr], we
havel'a;Xo; Aa; Yo F ret(01..p, pm,e) i1 t, Az, T, whereAs; =
HYm-p(A or, A]u). While3y;, - p(AOLAA{) = AOLEYm-p(AA{)
= Aoy, E|Ym~p(¢pr/\¢po) =As.

Case[smi1]. We deal with expressiomn(v1, .., v,). There are two
subcasegb-Mi ] and[D-Mi-prim |. The proof is similar to the case
[1nvaa].

Case[rLocavr]. We deal with expressionv = e;;e2. There are
two rules by which one step evaluation can be conducted:

Subcase p-Blk-1] By induction hypothesis and the assumption
weakening lemma.

Subcase p-Blk-2] By induction hypothesis and the rylerr].

theT'., ., and©,, are taken the same as the respective cases in Case[ir].Both the subcase-Ittrue | and [D-If-false] can be eas-

the proof of Theorem 1, and the alias consistency is alreeaiyed
there. We shall focus only on the constructionsf and T, to
ensure the size consistency the type preservation.

Case[vAar-FD]. Given that I'’A; T Fw:: [R— S|, AN, T,
and(Il, @, o) [w] — (1, w1,0) [V]. Let Ay = AAg, T = Y.
Then the type judgement,; Xo; Aq; Yo F v i [R = 8], Ag, Ta
follows from the covariant subsumption for sizessBs1]. For

size and memory consistency, as there is no change in r@-tim

environment during reduction, we hawg;, = Ay . Further-
more, A, =3X-A where X = (V(A) — prime(V(T"))) U Dg.
Let X = (V(Aq)— prime(V(I"))) U De,, . Whenw is a variabley,
we havedX - A=3X - A, Wwhenw ¢ O, anddx - A = 3X - A,
otherwise. SoA, = 3X - Aq. Whenw is a field-read. f, we
have3Xx - A =3X - A,, and thus the proof.

Case[assianN]. We deal with expressiomw = e. From the sta-
tic semantics, we have; A; Y e :: t1, A1, T1. There are two
rules by which one step evaluation can be conducted:

Subcase p-Assign-1 By induction hypothesis, there exist >,
C"')a: Aa: andT(x: SUCh thar‘a; Ea; A(x? C—)a; T(z }: <H17 w1, 01> .
The relationship between, andT for them to be consistent

ensures that', - w :: t, ¢, Y, as shown in the premise of the

rule [assiGN]. By applying rule[assian] onT,, 3, Ay and
Yo, We havel'y; Yo; Aa; Yo Fw = e1 :: void ()@, Az, T1.
Subcase p-Assign-J Here, e is some valuer = (A;, 65). From
dynamic semantics, we obtajfiy, =) = upd(Il, =, w,v). Let
Yo =T andA, = Ay = 3Z-A1 oy p(¢), as given in the static

rule, withZ = vV (¢1) U V(¢). Type preservation and consistency

relation is obvious.

Case[NEW]. GivenT; A; Y F newc(vi. p) = c(r*)@, A1, T1. We
chooseA, = A1, T, = T4, and the proof follows.

Case[1mi]. Given thatl; ; A; T - vo.mn(v1..p) == t, Aa, Yo, Where
Ao = Aoy Y -p(pprAgpo). The one-step reduction is
(I, @, o) [vo.mN(v1..p)]— (II1, @, 01) [ret(do..p, p, €)]. We need
to show size consistency and type preservationA et Ao A,
whereAc=no¥ (U_ {Vu(%:)}), fo = c(n*)@, and the method
(AE mn((£; ©:)i:1..p) where ¢pr; dpo; €c; er{e}) € c(n*). Let

ily proven by the induction hypothesis and the covariande su
sumption ruldsuBsi].

Case[pisposk]. We deal with expressiondispose(). LetA, = A,
Yo = Yw{(c,1)}. The type preservation and the size & mem-
ory consistency are straightforward, from the respectieeyses.

Case[reLA]. The only possible reduction step is-RRela]. The
proof follows by induction hypothesis.

Case[eLF].We deal with expressionet(v*, p,e). There are five
rules by which one step evaluation can be conducted:

Subcase p-ret-1] By induction hypothesis.

Subcase p-ret-2] Let A, = A, T = Y. The proof follows im-
mediately.

Subcase p-ret-3] By rule [rReLa] and [ELF].

Subcase p-Tim] The proof is similar to that for the casei],
except thatC, = YW{(S, b+k—(p+3))}.

Subcase p-Tsm] The proof is similar to that for the casen],
except thatl, = YW{(S, b+k—(p+2))}.

(b) This can be proved by establishing that each well-typed
constant fronjconsi] to [consa] does not change. In addition,
the resulted post-condition obtained is consistent with the run-
time stack and store. a

14.3  Proof of Theorem 3
By induction over the depth of type derivation for expressio

Case[cons1-4]. Trivial.

Case[var-FD]. We deal with the expression. AS w =v | v.f
is well-typed, from type rulévar-rp], neitherv norw is in
Up or L mode. Thus from the evaluation rulp-var-FD] (the
function read), the evaluation either reports @mror-Null , or
advances one step yielding a value.

Case[assien]. We deal with expression = e, wherew = v | v.f.
From the type rule, we know; A; T e :: t1,A1,T1. By in-
duction hypothesis, either (§)is a valuev, or (i) (I, w, o) [e]
— Error-Null , or (iii) (I, @, o) [¢] — (11,1, 01) [e1]-

YTo="T—{(S,p+3)}. The size consistency is ensured by the
definition of updvEand the respective premise. Since no vari-
ables/fields ine will be used by the method body, check-
ing the method body only involves size variables of formal
parameters(9?)*. Thus, T'n;Xa; Aajeb e t, Ao Apy, Y1,
where A, and Y are derived from ruldmeTH]. Note that

In case (i), from the well-typedness checking, neitle&ror v is

in L or R mode, and the RHS and LHS subsumes the alias sub-
typing, from the evaluation rul@-assign-4 (the functionupd),
either the evaluation reports &mor-Null , or the one-step eval-
uation succeeds, yielding a val( ().



In case (i), the evaluation for the assignment reports an
Error-Null .

In case (iii), from evaluation rulép-aAssign-1, the evaluation
advances with one-step.

Case[NEw]. We deal with expressionewc(v; . ). From the type

rule [NEw], nOo arguments; are in the consumed set, and the
type of each argument and that of its corresponding field con-
form to the (alias) subtyping relation. From the memory t®ns
tency and type rulénew], cJY3{(c, 1)}, which guarantees
the memory adequacy. Thus from the evaluation folgew,

the evaluation succeeds, yielding a newly created objettten
store.

Case[pisposk]. We deal with expressiondispose(). LetIl(v)=

(A,0). If § =null, the evaluation reports aBrror-Null . Oth-
erwise, as the well-typedness ensuf@sU), the evaluation
[D-Disposé succeeds.

Case[reEL—A]. We deal with expressiorel 4 (b, k,e). Note that

e cannot be a value, otherwise, the whole expression should
be inside aret(..). If the evaluation ofe can make one-step
reduction, then so isel 4 (b, k, ¢) by dynamic rule[D-RelA]. If

the evaluation ot reports arkrror-Null , SO iSrel 4 (b, k, ).

Case[1mi]. We deal with expressiony.mn(v1..,). As guaranteed

by type rule[imi], no unique arguments are consumed before
the method call, and the type of each argument and that of
its corresponding field conform to the (alias) subtypingrel
tion. From memory consistency, type rulgsii] and [METH],
oY de.doo, the memory is adequate from the evaluation rule
[D-Im1 ], thus the evaluation succeeds, yielding the intermediate
ret-expression.

Case[swmi]. the proof for two subcasés-smi] and[D-SMi-prim | are

similar to the above.

Case[LocaLr]. We deal with expressiomv = ej;e2. From the

type rule, we have'; A; Y +e; :: t1, A1, T1. By induction hy-
pothesis, either (ix; is a valuev, or (i) (Il,w=,o) [e1] —
Error-Null , or (iii) (IT, @, o) [e1] — (1, w1, 01) [é1]-

In case (i), the type ruléLocar] guarantees the alias sub-
typing relation needed in the evaluatimsik-2] (the function
ex). From the memory consistency and type ril@cat],
cJY3{(8,1)}, which ensures the memory adequacy. Thus
the evaluation succeeds. In case (ii), the evaluation tepor
Error-Null immediately. In case (iii), the proof follows from
[D-BIk-1].

Case[1r]. We deal with expressioif v then e; elsees. The type

rule ensures is of typebool, thus there always exists an eval-
uation step to be taken in spite of the valuevpthat is, either
[D-lf-true | Or [D-If-false].

Case[eLF]. We deal with expressioget(v*, p, ¢). From the type

rule, we hava; ; A; T e :: t, A1, T1. By induction hypothe-
sis, either

(1) eisrel (b, k,v), OF

(2) eisrelp(b, k,vo.mn(v1. )), OF

(3) eisrelp(b,k,mn(vy..p)), OF

(4) eisret(u*,[],é), Or

(5) (11, @, o) [e] — Error-Null , or

(6) (11, @, o) [e] — (I1,w1,01) [e1]-

In subcase (1), the proof follows frofp-Ret-3). In subcase (2),
the proof follows fromp-Tim]. In subcase (3), the proof follows
from [D-TsM]. Note that for subcase (2) and (3), the memory ad-
equacy is analyzed similar to the cdseai]. In subcase (4), the
proof follows from[b-Ret-2]. In subcase (5), the evaluation re-
portsError-Null immediately. In subcase (6), the proof follows
from [D-Ret-1]. m]



