
Predictable Memory Usage for Object-Oriented Programs

Wei-Ngan Chin1,2, Huu Hai Nguyen1, Shengchao Qin1,2 ∗, and Martin Rinard3

1 Computer Science Programme, Singapore-MIT Alliance
2 Department of Computer Science, National University of Singapore

3 Laboratory for Computer Science, Massachusetts Instituteof Technology
{chinwn,nguyenh2,qinsc}@comp.nus.edu.sg, rinard@lcs.mit.edu

Abstract
We present a new (size-)polymorphic type system (for an object-
oriented language) that characterizes the sizes of data structures
and the amount of heap and stack memory required to successfully
execute methods that operate on these data structures. Key compo-
nents of this type system include type assertions that use symbolic
Presburger arithmetic expressions to capture data structure sizes,
the effect of methods on the sizes of the data structures thatthey
manipulate, and the amount of memory that methods allocate and
deallocate. For each method, it can provide expressions that (con-
servatively) capture the amount of memory required to execute the
method as a function of the sizes of the method’s inputs. The safety
guarantee is that the method will never attempt to use more memory
than its type expressions specify.

We have implemented a type checker to verify memory us-
ages of object-oriented programs, and also an inference system to
predict on memory usages. Our experience is that the type sys-
tem can effectively capture memory bounds of object-oriented pro-
grams.

1. Introduction
Memory management is a key concern for many applications.

Over the years researchers have developed a range of memory man-
agement approaches; examples include explicit allocationand deal-
location, copying garbage collection, and region-based memory al-
location. A key safety concern in every approach is the possibility
of dangling references that allow the program to unsafely access
memory that has been deallocated. Some approaches (garbagecol-
lection) rule out this possiblity altogether; for others researchers
have developed type systems that ensure that well-typed programs
either have no dangling references or never use dangling references
to unsafely access deallocated memory. Examples include linear
type systems [17, 19, 16] and type systems that eliminate thepos-
sibility of dangling references in programs that use region-based
memory allocation [33, 20, 5, 12].

∗ now at Durham University, UK. Email: shengchao.qin@durham.ac.uk

Technical Report, SoC, NUS, Nov., 2004

In this paper we address a complementary aspect of memory
safety : the possibility that the program may attempt to allocate
more memory than the execution platform can give it. We present
a (size-)polymorphic type system that characterizes the amount of
memory required to execute each program component. The key
components of this type system include:

• Data Structure Sizes and Size Constraints:The type of each
data structure includes parameters that characterize its size
properties, which are expressed in terms of the sizes of data
structures that it contains. In many cases the sizes of thesedata
structures are correlated; our approach uses size constraints ex-
pressed using symbolic Presburger arithmetic expressionsto
precisely capture these correlations.

• Memory Recovery: Our type system captures the distinction
between shared and unaliased objects and supports the safe
explicit deallocation of unaliased objects.

• Preconditions and Postconditions:Each method comes with
a precondition that captures both the expected sizes of the data
structures on which it operates and any correlations between
these sizes. The method’s postcondition expresses the new size
and correlations of these data structures after the method exe-
cutes as a function of the original sizes when the method was
invoked.

• Memory Usage Effects:Each method comes with a memory
effect. This effect uses symbolic values to specify both themax-
imum amount of memory that the method mayconsumeand the
minimum amount of memory that it willrecover. Memory ef-
fects are expressed at the granularity of classes and can capture
not only the net change in the number of instances of each class
but also the stack frames required to successfully execute the
method. Note that our type system correctly takes tail call op-
timizations into account when computing the total size of stack
frames required to execute the program.

Our type system therefore captures both the amount of memory
required to successfully execute each method and the net effect of
that execution on the amount of memory available to execute the
rest of the program. To determine the amount of heap and stack
memory required for the entire program, one merely examinesthe
effect of themain method. By combining the various components
of this effect, one can obtain symbolic expressions (where the
free variables denote sizes of the inputs) that capture the amount
of heap and stack memory required to execute the program. Our
type checking algorithm guarantees that well-typed programs will
execute safely given this amount of memory.

We believe that our type system can be of use whenever the
memory consumption of the program is of interest. It should be es-
pecially useful for embedded and safety-critical softwarebecause
1) such software often operates on platforms with limited amounts

of memory, and 2) failing because of insufficient memory can have
severe real-world consequences. Our type system enables the de-
velopers of these systems to determine a safe upper bound on the
amount of memory that the program may consume and to provision
their systems accordingly. This paper makes the following contri-
butions:

• Type System:We propose an advanced type system for object-
oriented (OO) paradigm that is able to specify memory usage in
a precise manner. To the best of our knowledge, this is probably
the firstmemory usage type systemfor OO paradigm.

• Memory Specification: Our proposal includes a specification
mechanism for memory usage. Abag abstractionnotation is
used to capture symbolic counts of memory consumed and
recovered by class types.

• Heap Recovery: We advocate forexplicit heap recoveryto
provide more timely reclamation of dead objects in support of
tighter bounds on memory usage. We show that this recovery
mechanism may be systematically and safely inserted.

• Stack Recovery:Explicit recovery mechanism is also extended
to the runtime stack. However, the operations for stack recovery
shall be inserted automatically. With these recovery operations,
we show howtail-call optimizationcan be fully accounted.

• Soundness:Our set of type checking rules have been proven
sound. Each well-typed program is guaranteed to meet its mem-
ory usage specification, and willnever fail due to insufficient
memorywhenever its memory precondition is met.

• Implementation: We have built a type checker that is both
precise and practical. This prototype is used to confirm the
viability of our approach. We have successfully verified the
memory needs for a suite of benchmark programs with the help
of this checker.

The primary goal of our work is a framework for static verifi-
cation of memory usage for object-oriented programs. Sec 2 illus-
trates the basic idea using a stack example. Sec 3 presents a core
object-oriented language, called MEMJ, with size, alias and mem-
ory annotations. Sec 4 describes our mechanism for memory us-
age specification which requires explicit recovery of both heap and
stack spaces. Sec 5 presents a set of syntax-directed type rules for
verifying the memory needs of user programs. Sec 6 presents the
dynamic semantics for our MEMJ language. Sec 7 outlines a set
of safety theorems which confirm that well-typed programs never
fail due to insufficient memory. Sec 8 describes how to perform
memory usage inference. Sec 9 describes our implementationand
highlights a suite of programs whose memory requirements have
been successfully verified by our type checker. Related works are
described in Sec 10, followed by a short conclusion.

2. Overview
Memory usage occurs primarily in the heap and the runtime stack.
The heap is used to hold dynamically created objects; the stack
holds parameters of method calls and variables of local blocks. In
our model, heap space is consumed via thenew operation for newly
created objects, while unused objects may be recovered via an
explicit deallocation primitive, calleddispose. Correspondingly,
stack space is consumed upon entry to either a method call or a
local block, and is recovered at the end of their respective scopes.

Memory usage (based on consumption and recovery) must be
calculated over the entire computation of each program. This cal-
culation is done in a safe manner to help identify the high-water
mark on memory space needed. We achieve this through the use of
a conservative upper bound on memory consumed, and a conserv-
ative lower bound on memory recovered for each expression (and

function). Moreover, it is possible to characterize the memory con-
sumption and recovery as a symbolic expression which depends on
the (sizes of) program’s inputs.

To help predict the memory usage of each program, we propose
a sized type systemfor object-oriented programs with support for
interprocedural size analysis. In this type system, size properties
of both user-defined types and primitive types are captured.In the
case of primitive integer typeint〈v〉, the size variablev captures its
integer value, while for boolean typebool〈b〉, the size variableb is
either0 or 1 denotingfalse or true, respectively. For user-defined
class types, we usec〈n1, . . . , np〉 where φ ; φI with size variables
n1, . . . , np to denote size properties that are defined in size relation
φ, and invariant constraintφI . As an example, consider a stack class
(which is implemented with a linked list) and a binary tree class as
shown below.
class List〈n〉 where n=m+1 ; n≥0 {
Object〈〉@S val;
List〈m〉@U next;

:
class Stack〈n〉 where n=m ; n≥0 {
List〈m〉@U head;

:
class BTree〈s, d〉 where s=1+s1+s2∧d=1+max(d1, d2) ; s≥0∧d≥0 {
Object〈〉@S val;
BTree〈s1, d1〉@U left;
BTree〈s2, d2〉@U right;

:

List〈n〉 denotes a linked-list data structure of sizen, and sim-
ilarly for Stack〈n〉. The size relationsn=m+1 and n=m define
some size properties of the objects in terms of the sizes of their
components, while the constraintn≥0 signifies an invariant associ-
ated with the class type. ClassBTree〈s, d〉 represents a binary tree
with size variabless andd denoting the total number of nodes and
the depth of the tree, respectively. Due to the need to track the states
of mutable objects, our type system requires the support of alias
controls of the formA=U | S | R | L. We useU andS to mark each
reference that is (definitely)unaliasedand (possibly)shared, re-
spectively. We useR to mark read-only fields which must never be
updated after object initialization. We useL to mark unique refer-
ences that are temporarily borrowed by a parameter for the duration
of its method’s execution.

To specify memory usage precisely, we decorate each method
with the following declaration:

t mn(t1v1, . . . , tnvn) where φpr;φpo; ǫc; ǫr {e}

Note thatφpr andφpo denote the precondition and postcondition
of the method, expressed in terms of constraints/formulae on the
size variables of the method’s parameters and result. Precondition
φpr denotes an applicability condition of the method in terms of
the sizes of its parameters. Postconditionφpo can provide a precise
size relation for the parameters and result of the declared method.
The memory effect is captured byǫc andǫr. ǫc denotesmemory re-
quirement, i.e., the maximum memory space thatmay be consumed,
while ǫr denotesnet release, i.e., the minimum memory space that
will be recoveredat the end of method invocation. Memory effects
(consumption and recovery) are expressed using a bag notation of
the form{(ci, αi)}m

i=1, whereci is either a class type orS (the run-
time stack), whileαi denotes its symbolic count.

Examples of method declarations for theStack class are given
in Fig 1. The notation (A ||) prior to each method captures the
alias annotation of the currentthis parameter. Note our use of
the primed notation, advocated in [22, 27], to capture imperative
changes on size properties. For thepush method,n′=n+1 captures
the fact that the size of the stack object has increased by 1; similarly,
the postcondition for thepop method,n′=n−1, denotes that the

class Stack〈n〉 where n=m ; n≥0 {
List〈m〉@U head;

L || void〈〉@S push(Object〈〉@S o)
where true;n′=n+1; {(List, 1), (S, 5)}; {}

{ List〈〉@U tmp=this.head;
this.head=new List(o, tmp)}

L || void〈〉@S pop() where n>0; n′=n−1;
{(S, 5)}; {(List, 1)}

{ List〈〉@U t1 = this.head; List〈〉@U t2 = t1.next;
t1.dispose(); this.head = t2}

L || bool〈b〉@S isEmpty() where n≥0; n′=n ∧
(n=0∧b=1 ∨ n>0∧b=0); {(S, 5)}; {}

{ List〈〉@U t = this.head; bool〈〉@S v = isNull(t);
this.head = t; v}

L || void〈〉@S push3pop2(Object〈〉@S o)
where true;n′=n+1; {(List, 2), (S, 9)}; {(List, 1)}

{ this.push(o); this.push(o); this.pop(o);
this.push(o); this.pop(o)}}

Figure 1. Methods for theStack Class

{
M
e
m
.

R
e
q
.

N
e
t

R
e
l
e
a
s
e
}

p
u
s
h
 p
u
s
h
 p
u
s
h
p
o
p
 p
o
p

t
i
m
e

Figure 2. push3pop2: Heap Consumption and Recovery

size of the stack is decreased by 1 after the operation. The memory
requirement for thepush method,{(List, 1), (S, 5)}, captures the
fact that oneList node will be consumed and the runtime stackS
must have at least five words - two words for the parameters andone
word for the local block, one for return address and one for previous
frame pointer. (To provide a specification that is independent of the
compiler used, we could use a symbolic constant, sayF = 2, to
denote the extra words needed to support each call frame. This
symbolic constant may be changed for different compilers. For
simplicity, we ignore this feature here.)

For thepop method,ǫr = {(List, 1)} indicates that oneList
object will be recovered. For theisEmpty method,n′=n captures
the fact the size of the receiver object (this) is not changed by the
method. Furthermore, its output of typebool〈b〉@S is related to the
object’s size through a disjunctive constraintn=0∧b=1 ∨ n>0∧b=0.
Note that primitive types are annotated with aliasS because their
values are immutable and can therefore be freely shared and yet
remains trackable.

For thepush3pop2 method, the memory consumed (or required)
from the heap is{(List, 2)}, while the net release is{(List, 1)}.
This is illustrated by Fig. 2.

The recovery of stack space isperfectat method boundary and
need not be explicitly specified. That is, if{(S, k)} space from the
runtime stack is consumed, then{(S, k)} memory space will also
be recovered for the stack. Also, size variables and their constraints
are only specified at method boundary, and need not be specified
for the local variables. Hence, our use ofbool〈〉@S instead of
bool〈v〉@S for a boolean-type local variable.

3. Language and Annotations
The language we focus on is a non-trivial core for an object-
oriented language with size, alias, and memory annotations. We call

this language MEMJ. The syntax is given in Fig 3. A suffix notation
y∗ denotes a list of zero or more distinct syntactic terms that are
suitably separated. For example,(t v)∗ denotes(t1 v1, . . . , tn vn)
where n≥0. Local variable declarations are supported by block
structure of the form:(t v = e1; e2) with e2 denoting the result.

P ::= de∗ m∗

de ::= class c1〈n1..p〉 [extends c2〈n1..q〉] where φ;φI{fd∗ (A ||m)∗}

fd ::= t f

m ::= t mn((t v)∗) where φpr;φpo; ǫc; ǫr {e}

t ::= τ 〈n∗〉@A

A ::= U | L | S | R

τ ::= c | pr

pr ::= int | bool | void | float

w ::= v | v.f

e ::= (c) null | k | w | w = e | t v = e1 ; e2

| new c(v∗) | v.mn(v∗) | mn(v∗)
| if v then e1 else e2 | v.dispose()

ǫ = {(c, α)∗} (Memory Space Abstraction)

φ ∈ F (Presburger Size Constraint)

::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃n · φ | ∀n · φ

b ∈ BExp (Boolean Expression)

::= true | false | α1 =α2 | α1 <α2 | α1≤α2

α ∈ AExp (Arithmetic Expression)

::= kint | n | kint ∗ α | α1+α2 | −α
| max(α1,α2) | min(α1,α2)

wherekint ∈ Z is an integer constant

n ∈ SV is a size variable

f ∈ Fd is a field name

v ∈ Var is an object variable

Figure 3. Syntax for the MEMJ Language

We assume a call-by-value semantics for MEMJ, where values
(primitives or references) are passed as arguments to parameters
of methods. For simplicity, we do not allow the parameters tobe
updated (or re-assigned) with different values. There is noloss
of generality, as we can always copy such parameters to local
variables for updating, without altering the external behaviour of
method calls.

The MEMJ language is deliberately kept simple to facilitate the
formulation of static and dynamic semantics. This core language
can be extended with syntactic abbreviations to make programming
more convenient. Some syntactic conveniences include:

• Multi-declarations block is an abbreviation for nested expres-
sion blocks.

(d1 ; · · · ; dn ; e) ≡ (d1 ;(· · · (dn ; e) · · ·))

• Sequence is a special case of local block, wheree1 is of void
type; as shown below.

(e1 ; e2) ≡ (void〈〉@S v = e1 ; e2)

For convenience, we introduce an alternative sequence which
returns the first sub-expression as its result.

(e1 <; e2) ≡ (t v = e1 ; e2; v)

• Expressions may be used where variables are expected, aided
by the following equivalences.

m(e1, . . . , en) ≡
(t1 v1 = e1 ; · · · ; tn vn = en ; m(v1, . . . , vn))

if e1 then e2 else e3 ≡
(bool〈〉@S v = e1 ; if v then e2 else e3)

• Loops can either be supported directly or be viewed as syn-
tactic abbreviations for tail-recursive functions. With inter-
convertibility, we use the former for execution and the latter
(which uses slightly more stack space) for type checking.

Several other language features, including downcast operation,
while loop (to eliminate stack frame) and a field-binding construct
(similar to pattern-matching), are also supported in our implemen-
tation. For simplicity, we put them in the appendix, as they play
supporting roles and are not core to the main ideas proposed here.

To support sized typing, our programs are augmented with size
variables and constraints. For size constraints, we presently restrict
to Presburger form, as decidable (and practical) constraint solvers
exist, e.g. [30]. For simplicity, we are only interested in track-
ing size properties of objects. We therefore restrict the relation φ
in each class declaration ofc1〈n1..p〉 which extendsc2〈n1..q〉 to
the form

Vp
i=q+1 ni=αi wherebyV(αi)∩{n1, .., np} = ∅. Note that

V(αi) returns the set of size variables that appeared inαi. This re-
stricts size properties to depend solely on the components of their
objects. (Size constraints between components, such as those found
for balanced heights of AVL trees are disallowed here, but may be
placed inφI instead.)

Note that each class declaration has a set of instance methods
whose main purpose is to manipulate objects of the declared class.
For convenience, we also provide a set of static methods withthe
same syntax as instance methods, except for access to thethis

object.
One important characteristic of MEMJ is that memory recovery

is done explicitly but safely (without creating dangling references).
In particular, dead objects may be reclaimed via av.dispose()
primitive. While heap space recovery is the responsibilityof the
programmer, the stack recovery commands shall be automatically
inserted (see Sec 4.3 for a translation scheme). To achieve auto-
matic stack recovery, we add two primitives into an extendedinter-
mediate language, as follows.

e ::= . . . | relA(kint
1 , kint

2 , e) | relB (kint
1 , kint

2 , e)

Note thatrelB andrelA are for the explicit recovery ofk1+k2

space from the stackbeforeandafter (respectively) the evaluation
of its expressione. Thek1 value can only be either 0 or 2 depending
on whether it is a local or method block.k2 denotes the number of
non-void parameters/variables in the frame. TherelB command is
used to support tail-call optimization, whereby the stack recovery
is madebeforethe last call is evaluated.

3.1 Alias Checking

We introduce four alias control mechanismsU | S | R | L adopted
from [6, 9, 1]. These alias mechanisms shall be used to support
precise size tracking in the presence of mutable objects, and also
for the explicit recovery of memory space when unique objects
become dead. For size-tracking, we introduceR-mode fields to
allow size-immutable properties to be accurately tracked for all
objects. For example, an alternative class declaration forthe list
data type is given below, where itsnext field is marked as read-
only (or immutable). Note that theval field remains mutable.

class RList〈n〉 where n=m+1 ; n≥0 {
Object〈〉@S val;
RList〈m〉@R next;

:
The size property of such anRList type can be analysed at

compile-time, while allowing its objects to be freely shared. How-
ever, this comes at the cost of losing both mutability and unique-
ness.

We make use ofL-mode parameters, with thelimited unique
(or lent-once) property [9], to capture unique references that are

temporarily lent out to method calls. They allow the preservation
of uniqueness together with precise size-tracking across methods.
Consider the following method with twoList parameters.

void〈〉@S join(List〈m〉@L x, List〈n〉@U y)
where n > 0; m′=n+m; · · ·

{ if isNull(x.next) then x.next = y

else join(x.next, y) }
The first parameter is annotated aslent-onceand can thus be

tracked for size properties without loss of uniqueness. However,
the second parameter is markeduniqueas its reference escape the
method body (into the tail of theList from the first parameter).
In other words, the parametery can have its uniqueness consumed
but notx, as reflected in the body of the above method declaration.
Given two unique lists,a andb, the calljoin(a, b) would consume
the uniqueness ofb but not that ofa. Our lent-once policy is more
restrictive than the policy of normal lending [1] as we require each
lent-once parameter to be unaliased within the scope of its method.
For example,join(a, a) is allowed by the type rules of [1], but
disallowed by our lent-once’s policy.

In our alias type system, uniqueness may be transferred (by
either assignment or parameter-passing) from one location(vari-
able, field or parameter) to another location. Consider a type
environment{x::Object〈〉@U,y::Object〈〉@U, z::Object〈〉@S} where
variables x and y are unique, whilez is shared. In the code
{x = y; z = x}, the uniqueness ofy is first transferred to location
x, followed by the consumption of uniqueness ofx that is lost to
the shared variablez. Alias subtyping rules (shown below) allow
unique references to be passed to shared and lent-once locations (in
addition to other unique locations), but not vice-versa.

A≤a A U ≤a L U ≤a S

A key difference of our alias checking rules, when compared
to [1], is that we do not require an external “last-use” analysis for
variables. Neither do we need to change the underlying semantics
of programs to nullify each field location whose uniqueness is lost.
We achieve this with a special set of references whose uniqueness
have been consumed, calleddead-setof the form {w∗} where
w = v | v.f . This dead-set is tracked flow-sensitively in our system
using type judgement of the form:

Γ;Θ ⊢ e :: t, Θ1

Here, each dead-setΘ(Θ1) captures the set of references with
consumed uniqueness before(after) the evaluation of expressione.
Γ is a type enviroment which maps variables to their annotated
types. Other type judgements for methods, classes and programs
have the following forms.

Γ ⊢meth meth ⊢def def ⊢P defi:1..p methi:1..q

More details of our proposed alias annotation mechanism are
described in another report [13] . In the Appendix, we give details
of a separate set of alias checking type rules in Fig 10.

4. Memory Usage Specification
To allow memory usage to be precisely specified, we propose

a bag abstraction of the form{(ci, αi)}
n
i=1 whereci denotes its

classification, whileαi is its cardinality. In this paper, we shall use
ci ∈ CN∪ {S} whereCNdenotes all class types. For instance,Υ1 =
{(c1, 2), (c2, 4), (S, 3)} denotes a bag withc1 appearing twice,c2
appearing four times andS appearing thrice. We provide the fol-

lowing two basic operations for bag abstraction to capture both the
domain and the count of its element, as follows:

dom(Υ) =df {c | (c, n) ∈ Υ}
Υ(c) =df n, if (c, n) ∈ Υ

0, otherwise

We define several operations (union, difference, exclusion) over
bags:

Υ1 ⊎ Υ2 =df {(c, Υ1(c)+Υ2(c)) | ∀c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ1 − Υ2 =df {(c, Υ1(c)−Υ2(c)) | ∀c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ \ X =df {(c, Υ(c)) | ∀c ∈ dom(Υ) − X}

To check for adequacy of memory, we provide a bag comparator
operation under a size constraint∆, as follows:

∆ ⊢ Υ1 ⊒ Υ2 =df (∆ ⇒ (∀c ∈ Z · Υ1(c) ≥ Υ2(c)))
where Z = dom(Υ1) ∪ dom(Υ2)

The bag abstraction notation for memory is quite general and
can be used in different ways. For example, if a small memory
footprint is needed, we could bundle our system with a memory
compacter and then change the memory abstraction to a coarser
one with only two classifications, namely heap (denoted byH) and
runtime stack (denoted by denoted byS). For simplicity, we shall
only use the memory abstraction that is grouped by class types (and
stackS).

4.1 Memory Consumption

Heap space is consumed when objects are created by thenew primi-
tive, and also by method calls, except that the latter is aggregated to
include recovery prior to consumption. Our aggregation (ofrecov-
ery prior to consumption) is designed to identify a high-water mark
of maximum memory needed for safe program execution. For each
expression, we predict a conservative upper bound on the memory
that the expressionmay consume, and also a conservative lower
bound on the memory that the expressionwill release. If the ex-
pression releases some memory before consumption, we will use
the released memory to obtain a lower memory requirement. Such
aggregated calculations on both consumption and recovery can help
capture both a net change in the level of memory, as well as the
high-water mark of memory needed for safe execution.

For example, consider a recursive function which doesp pops
from one stack object, followed by the same number of pushes on
another stack. (For simplicity, we omit the usage specification of
runtime stack.)
void〈〉@S moverec(Stack〈n〉@L s, Stack〈m〉@L t, int〈p〉@S i)

where n≥p≥0; n′=n−p∧m′=m+p; {} ; {}
{ if i<1 then ()
else {Object〈〉@S o = s.top(); s.pop();

moverec(s, t, i−1); t.push(o)} }
Due to aggregation (involving recovery before consumption),

the heap space that may be consumed is zero. For each recursive
call, the space for aList node is released bys.pop() before it is
reused byt.push(o). Aggregated over the recursive calls, we will
havep number ofList nodes that have been released before the
same number of nodes are consumed. Hence, no new heap space is
needed. Such aggregation is obviously sensitive to the order of the
operations.

Consider now a different function which performsp pushes on
t, followed by the same number of pops froms.
void〈〉@S moverec2(Stack〈n〉@L s, Stack〈m〉@L t, int〈p〉@S i)

where n≥p≥0; n′=n−p∧m′=m+p; {(List, p)}; {(List, p)}
{ if i<1 then ()
else {Object〈〉@S o = s.top(); t.push(o);

moverec2(s, t, i−1); s.pop()} }
Though the net change in memory usage is also zero, the mem-

ory effect for this function is different as we requirep number of

List nodes to be consumed on entry,beforethe same number of
List nodes be recovered. This new memory effect has the poten-
tial to push up the high-water mark of memory used byp List

nodes.

4.2 Heap Recovery

In MEMJ, heap space recovery is achieved explicitly (and safely)
through thedispose primitive. Explicit recovery of heap space has
several advantages. It facilitates the timely recovery of dead ob-
jects, which allows memory usage to be predicted more accurately
(with tighter bounds). It also permits the use of more efficient cus-
tom allocators[4], where desired.

Moreover, we shall provide an automatic technique to insert
dispose primitives with the help of alias annotation. With such
guidelines, the programmers’ main role is to ensure that objects that
are being disposed are non-null. This non-nullness information can
be captured by a non-nullness analyser, such as [18], for a complete
solution to explicit heap recovery. Let us see where heap recovery
should be made.

Memory recovery viadispose should occur when unique ref-
erences that are still alive (not in dead-set) are being discarded.
This could occur at four places1 : (i) end of local block, (ii) end of
method block, (iii) prior to assignment operation, and (iv)at condi-
tional expression. We would like to recover the memory spacefor
each non-null reference that is about to become dead. For example,
consider thepop method’s definition:

L | void〈〉@S pop() where · · ·
{ List〈〉@U tmp = head.next; head = tmp}

The object pointed to byhead is about to become dead prior to
the operation,head = tmp. To recover this dead object, we may in-
sert adispose command to obtainhead = (tmp <; head.dispose()).
As another example, consider a definition of thedestroy method
which callsemptyStack with anL-mode parameter.

void〈〉@S destroy(Stack〈n〉@U s) where · · ·
{emptyStack(s)}

void〈〉@S emptyStack(Stack〈n〉@L s) where · · ·
{ bool〈〉@S v = s.isEmpty();
if v then () else {s.pop(); emptyStack(s)}}

A unique s object is about to become dead at the end of the
destroy method. To recover this space, we shall inserts.dispose(),
prior to the method’s exit.

We present an automatic technique for the explicit recoveryof
dead objects that are known at compile-time. Given an expressione,
we utilize the alias annotation to obtain a new expressione1 where
suitable explicit heapdispose operations have been safely inserted,
as follows, whereΘ(Θ1) denotes the set of dead references before
(after) the evaluation of expressione.

Γ; Θ ⊢ e →֒H e1 :: t, Θ1

Most rules are structure-preserving (c.f. identity) rewritings, ex-
cept for four rules, where a sequence of disposal can be effected
throughdispose(D), with D containing a set of variable/field refer-
ences that are to be disposed at the end of expressione.

[H:ASSIGN]

¬ isParam(w) Γ(w) = t D = {w | ann(t) = U} − Θ1

Γ; Θ ⊢ e →֒H e1 :: t1, Θ1 ⊢ t1 <: t
e2 = (e1 � D=∅ � e1<; dispose(D))

Γ;Θ ⊢ w = e →֒H w = e2 :: void@S,Θ1\w

1 Note that unique reference cannot escape throughe1 in e1; e2 as we
requiree1 to be of thevoid type.

[H:METH]

Γ1 = Γ + {v1 :: t1, .., vp :: tp}
Γ1; ∅ ⊢ e →֒H e1 :: t, Θ ⊢ t <: t0 ann(t0) 6= L

∀i ∈ 1..p · (ann(ti) =L) ⇒ (∀f · vi.f 6∈ Θ)
D = {w | (w :: t) ∈ Γ1, ann(t) = U} − Θ

e2 = (e1 � D=∅ � e1<; dispose(D))

Γ ⊢meth t0 mn((ti vi)i:1..p){e} →֒H t0 mn((ti vi)i:1..p) {e2}

[H:LOCAL]

Γ; Θ ⊢ e1 →֒H e3 :: t1,Θ1 ⊢ t1 <: t
ann(t) 6∈ {L, R} Γ + {v :: t}; Θ1 ⊢ e2 →֒H e4 :: t2, Θ2

D = {v | ann(t) = U} − Θ2

e5 = (e4 � D=∅ � e4<; dispose(D))

Γ; Θ ⊢ (t v = e1 ; e2) →֒H (t v = e3 ; e5) :: t2, Θ2\v

[H:IF]

Γ(v) = bool〈b〉@S Γ;Θ ⊢ ei →֒H êi :: ti,Θi i = 1, 2
t = msst(t1, t2) Θ3 = Θ1 ∪ Θ2 Di = Θ3−Θi i = 1, 2

Ei = (êi � Di=∅ � êi<; dispose(D)) i = 1, 2

Γ; Θ ⊢ if v then e1 else e2 →֒H if v then E1 else E2 :: t, Θ3

For the assignment rule[H:ASSIGN], we addw to the disposal
set if it is unique and is not yet in dead-set usingD = {w | ann(t)=U}−Θ1.
For the method declaration rule[H:METH], we add to the dis-
posal set those parameters which are unique but not yet dead us-
ing {w | (w :: t) ∈ Γ1, ann(t) = U} − Θ. For the local declaration
rule [H:LOCAL], we addv to the disposal set if it is unique but
not yet dead using{v | ann(t) = U} − Θ2. For the[H:IF] rule, the
uniqueness that are consumed in only one branch may have their
heap spaces recovered in the other branch. This is captured by
Di = Θ3−Θi , i = 1, 2.

Some other notations used are described below. The function
isParam(w) returnstrue if w is a parameter variable, otherwise
it returnsfalse (for fields and local variables). The functionann
extracts the alias of an annotated type,ann(τ〈v∗〉@A) = A. The con-

ditional is expressed asξ1 � b � ξ2 =df

� ξ1, if b;
ξ2, otherwise. Further-

more, we have:

Θ\v =df Θ − {v, v.f∗} Θ\v.f =df Θ − {v.f}

while msst(t1, t2) returns the minimal supertype of botht1 andt2,
as follows:

τ1 <: τ τ2 <: τ ∀τ3 · (τ1, τ2 <: τ3⇒τ <: τ3)

A1≤aA A2≤aA ∀A3 · (A1, A2≤aA3⇒A≤aA3)

msst(τ1@A1, τ2@A2) =df τ@A

Note thatτ1 <: τ2 denotes the subtype relation for underlying
types (without annotations).

4.3 Automatic Stack Recovery

A crucial difference of the stack, when compared to the heap,is
that the former is lexically scoped and has perfect recoveryof its
space. Its memory usage could thus be tracked without leakage.
For stack space, the main rationale for explicit recovery isto facil-
itate tail-call optimization to minimise on stack usage. Wepropose
to achieve this through a transformation scheme. Specifically, we
introduce the following set of translations (for expressions, meth-
ods and class declarations) to automatically insert stack recovery
operations.

e →֒S e1 Γ ⊢ meth→֒S meth1 def →֒S def1
Most of the rules are structure-preserving (c.f. identity)rewritings,
except for the following two cases where arelA command is being
inserted.

k = (0 � type(t) = void � 1) e1 →֒S e3 e2 →֒S e4

(t v = e1; e2) →֒S relA(0, k, (t v = e3; e4))

e →֒S e1 k = |dom(Γ)| + |v∗|
Γ ⊢ t mn((t v)∗) where φpr; φpo; ǫc; ǫr{e} →֒S

t mn((t v)∗) where φpr;φpo; ǫc; ǫr{relA(2, k, e1)}

3

b
e
g
i
n
n
i
n
g

o
f

t
h
e

c
a
l
l

d
u
r
i
n
g

i
s
E
m
p
t
y
(
)

3

5

3

1

v

3

1

5

d
u
r
i
n
g

p
o
p
(
)

3

1

b
e
f
o
r
e

r
e
l
B

a
f
t
e
r

r
e
l
B

0

r
e
c
u
r
s
i
v
e

c
a
l
l

Figure 4. Stack Configurations for Execution ofemptystack

Recall that the first argument of therelA command is to distin-
guish between local and method block. We assign a value of2 for
the latter, so as to provide recovery for two extra words present
in each method’s stack frame. For the second rule, we setk to the
number of parameters using|dom(Γ)| + |v∗|, whereΓ may contain a
this parameter. We also use a set of rewritings (denoted by→֒O) to
aggregaterelA commands of nested blocks together, and to push
eachrelA command towards the last subexpression that may be
evaluated. The first rule is in a special form as only the outermost
relA command may originate from the method block.

relA(b, k1, relA(0, k2, e)) →֒O relA(b, k1 + k2, e))

relA(b, k, (t v = e1; e2)) →֒O (t v = e1; relA(b, k, e2))

relA(b, k, if v then e1 else e2) →֒O
if v then relA(b, k, e1) else relA(b, k, e2)

For relA command that originates from method block, and if
the last sub-expression is a call, we optimize its stack usage as a
tail-call. This is done by replacing with arelB command, as shown
below.

e = mn(v∗) | v.mn(v∗) b = 2
relA(b, k, e) →֒O relB(b, k, e)

Consider the followingemptyStack method.
void〈〉@S emptyStack(Stack〈n〉@L s) where · · ·

{ bool〈〉@S v = s.isEmpty();
if v then () else {s.pop(); emptyStack(s)}}

After the insertion ofrelA primitives by →֒S, we initially obtain
the following method body where the stack requirement is linear to
its input size.

void〈〉@S emptyStack(Stack〈n〉@L s) where n≥0∧d=n;
n′=0; {(S, 4×d+8)}; {(List, d)}

{relA(2, 1,relA(0, 1, (Bool〈〉@S v = s.isEmpty();
if v then () else (s.pop(); emptyStack(s)))))}

Fur-

ther rewriting by→֒O would result in the following code with the
effect of tail-call optimization.

void〈〉@S emptyStack(Stack〈n〉@L s) where n≥0∧d=n;
n′=0; {(S, 9)}; {(List, d)}

{(Bool〈〉@S v = s.isEmpty();
if v then relA(2, 2, ())
else (s.pop(); relB(2, 2, emptyStack(s))))}

One benefit of this new code is that its stack space requirement is
now {(S, 9)} instead of{(S, 4×d+8)}. Fig. 4 illustrates the effect
of tail-call optimization on the runtime stack.

5. Type Rules for Memory Checking
We present type judgements forexpressions, method declarations,
class declarationsandprogramsto check for adequacy of memory,
using relations of the form:

Γ; ∆;Υ ⊢ e :: t, ∆1,Υ1 Γ ⊢meth meth ⊢class def ⊢ P

Note thatΓ is a type environment mapping program variables
to their annotated types;∆(∆1) denotes the size constraint, which

holds for the size variables associated withΓ (Γ andt) for expres-
sion e before (after) its evaluation;t is an annotated type. Also,
Υ(Υ1) is used to denote the available memory space in terms of
bag abstraction before (after) the evaluation.

We present a few key syntax-directed type rules in Fig 5, with
the rest of the rules in the Appendix (Fig 11). Before that, let us
describe some notations used by the type rules.

5.1 Notations

We use functionV to return size variables in a size formula, e.g.,
V(x′=z+1∧y=2) = {x′, y, z}. We extend it to annotated type, type
environment, and memory specification, e.g.,V(τ〈n∗〉@A)={n∗},
V({(S, 4×d+8)})={d}. While the functionVu is used to return size
variables in unprimed form, e.g.Vu(x′=z+1∧y=2) = {x, y, z}.

The functionprime takes a set of size variables and returns
their primed version, e.g.prime({s1, . . . , sn})={s′1, . . . , s′n}. Note
that prime operation is idempotent, namelyv′′=v′. We extend
this to (annotated) type, type environment, and even substitu-
tion. For example,prime(τ〈n1, . . . , nk〉) = τ〈n′

1, . . . , n′
k〉, and

prime([x 7→a, y 7→b]) = [x′ 7→a′, y′ 7→b′]. Often, we need to express
a no-change condition on a set of size variables. We define anoX
operation as follows which returns a formula for which the original
and primed variables are made equal.

noX ({}) =df true noX ({x}∪X) =df (x′=x)∧noX (X)

We extend this function to annotated types (and type environ-
ments), as follows:noX (t) =df noX (V(t)). Also, we usen∗ = fresh()
to generate new size variablesn∗. We extend it to annotated type,
so thatt̂ = fresh(t) will return a new typêt with the same under-
lying type ast but with fresh size variables instead. The func-
tion equate(t1, t2) generates equality constraints for the correspond-
ing size variables of its two arguments, usually when both ar-
guments share the same underlying type. For example, we have
equate(Int〈r〉, Int〈s′〉) = (r=s′). The functionrename(t1, t2) re-
turns an equality substitution, e.g.rename(Int〈r〉, Int〈s′〉)=[r 7→s′].
The operator∪ combines two domain-disjoint substitutions into
one.

The function fdList is used to retrieve a full list of fields for
a given class, together with its size relation. The functioninv is
used to retrieve the size invariant that is associated with each type.
This function shall also be extended to type environment andlist of
types. The functionVfield classifies size variables from each field
into three groups : (i) immutable, (ii) mutable but unique, (iii)
otherwise (non-trackable).

5.2 Assignment

The [ASSIGN] rule captures imperative updates (to object fields
and variables) by modifying the current size constraint to anew
updated state with changes to the imperative size variablesfrom the
LHS. From the rule, note thatΓ ⊢ w :: t, φ, Y is to identifyY as a
set of imperative size variables and also to gather an invariantφ for
this set. The subtype relation⊢ t1 <: t, ρ will return a substitution
that maps the size variables of supertype to that of the subtype.
This mapping ignores all non-trackable size variables thatmay be
globally aliased, but immutable and unique mutable size variables
are captured by it.

GivenΓ = {n :: int〈n〉@S, b :: int〈b〉@S}, consider:

Γ; ∆;Υ ⊢ n + b :: int〈s〉@S,∆1,Υ
Γ ⊢ n :: int〈r〉, r=n′, {n} ⊢ int〈s〉<:int〈r〉, [r 7→s]
∆1=∆∧s=n′+b′ ∆2=∃s, r · (∆1◦{n}[r 7→s]r=n′)

Γ; ∆;Υ ⊢ n = n + b :: void〈〉@S, ∆2,Υ

This example illustrates howprimednotation is used to repre-
sent the latest values of size variables at each post-state.It also
shows how updates are effected by a sequential composition op-
erator,◦Y , with Y = {n} to denote the set of size variables that

is being updated (cf. [22]). For example, if∆≡n′=n+b∧b′=3,
we expect the program state after the assignmentn = n + b to be
∆2≡n′=(n+b)+b′∧b′=3. This can be obtained by:

∆2 ≡ ∃s, r · ∆∧s=n′+b′ ◦{n} s=n′

≡ ∃s, r · ∃n0 · n0=n+b∧b′=3∧s=n0+b′∧s=n′

≡ ∃s, r · b′=3∧s=(n+b)+b′∧s=n′

≡ b′=3∧(n+b)+b′=n′

More formally, sequential composition is defined as:

∆ ◦Y φ =df ∃ r1 · · · rn · ρ2(∆) ∧ ρ1(φ)
where Y = {s1, . . . , sn} ; {r1, . . . , rn} = fresh()

ρ1 = [si 7→ ri]ni=1 ; ρ2 = [s′i 7→ ri]ni=1

5.3 Memory Operations

The heap space is directly changed by thenew anddispose prim-
itives. Their corresponding type rules, [NEW] and [DISPOSE],
would ensure that sufficient memory is available for consumption
by new and will credit back space relinquished bydispose. The
memory effect is accumulated according to the flow of computa-
tion. Consider:

∆⊢Υ⊒{(List, 1)} ∆1=∆◦{x}x′=x+1
Γ; ∆;Υ ⊢ x = new List(o, x) :: void〈〉@S, ∆1,Υ−{(List, 1)}

Υ1=(Υ−{(List, 1)})⊎{(List, 1)}
Γ;∆1; Υ−{(List, 1)} ⊢ y.dispose() :: void〈〉@S, ∆1, Υ1

Γ;∆;Υ ⊢ x = new List(o, x); y.dispose() :: void〈〉@S, ∆1,Υ

The new operation consumes aList node, while thedispose
operation releases back aList node. The net effect is that available
memoryΥ is unchanged. However, due to the order of the two op-
erations, we require∆⊢Υ⊒{(List, 1)} which affects the maximum
memory required.

Several other rules also have a direct effect on memory. The
rules [REL−B] and [REL−A] are used to recover stack space be-
fore and after the evaluation of their expressions, respectively. For
the method invocation rule [IMI], sufficient memory must be avail-
able for consumption prior to the call (as specified by∆1 ⊢ Υ⊒ǫc),
with the net memory release added back in the end (as specifiedby
Υ1 = Υ−(ǫc\{S})⊎ǫr). Note that stack space is fully recovered (as
S is excluded from consumption byǫc\{S}). Each method precon-
dition must be met by the pre-state of its caller. This is checked by
∆≈>V(Γ) ∃V(ǫc)∪V(ǫr)·ρ φpr which uses the logical relation≈>X ,
defined as:

∆ ≈>X φ =df (∆ ⇒ ρφ), where
ρ = [s1 7→ s′1, .., sn 7→ s′n] andVu(φ) ∩ X = {s1, .., sn}.

5.4 Conditional

Our type rule for conditional [IF] is able to track both the size-
constraints and memory usages in a path-sensitive manner. Path-
sensitivity is encoded by addingb′=1 and b′=0 to the pre-states
of the two branches, respectively. We achieve path-sensitivity for
memory usage specification by integrating it with relational size
constraints derived.

GivenΓ = b::Bool〈b〉@S, s::Stack〈s〉@U, we can derive:

∆∧b′=1⊢Υ⊒{(List, 1), (S, 5)} ∆1=∆∧b′=1 ◦{s} s′=s+1
Γ;∆∧b′=1;Υ ⊢ s.push() :: void〈〉@S, ∆1, Υ−{(List, 1)}

∆∧b′=0⊢Υ⊒{(S, 5)} ∆2=∆∧b′=0◦{s}s′=s−1
Γ;∆∧b′=0; Υ ⊢ s.pop() :: void〈〉@S, ∆2,Υ⊎{(List, 1)}

(,Υ3,∆3)=unify(, , Υ−{(List, 1)}, Υ⊎{(List, 1)}, ∆1,∆2)
Γ; ∆;Υ ⊢ if b then s.push() else s.pop() :: void〈〉@S, ∆3,Υ3

[ASSIGN]

Γ;∆;Υ ⊢ e :: t1,∆1, Υ1

Γ ⊢ w :: t, φ, Y ⊢ t1 <: t, ρ
X = V(t1) ∪ V(t)

∆2 = ∃X · (∆1 ◦Y ρφ)

Γ;∆;Υ ⊢ w = e :: void〈〉@S,∆2, Υ1

[IF]

Γ(v) = bool〈b〉@S
Γ; ∆ ∧ b′ = 1;Υ ⊢ e1 :: t1,∆1,Υ1

Γ; ∆ ∧ b′ = 0;Υ ⊢ e2 :: t2,∆2,Υ2

(t, Υ3, ∆3) = unify(t1, t2, Υ1, Υ2,∆1,∆2)

Γ;∆;Υ ⊢ if v then e1 else e2 :: t, ∆3, Υ3

[NEW]

fdList(c〈n∗〉) = ([(t̂i fi)]
p
i=1, φ′)

r∗ = fresh() ti = prime(Γ(vi))
⊢ ti <: [R 7→ S]t̂i, ρi i∈1..p
ρ = [n∗ 7→ r∗]∪

Sp
i=1ρi

∆ ⊢ Υ ⊒ {(c, 1)} X =
Sp

i=1 V(t̂i)
∆1 = ∆∧(∃X·ρφ′) Υ1 = Υ−{(c, 1)}

Γ;∆;Υ ⊢ new c(v1..p) :: c〈r∗〉@U,∆1,Υ1

[DISPOSE]

Γ(v) = c〈n∗〉@U
Υ1 = Υ ⊎ {(c, 1)}

Γ;∆; Υ ⊢ v.dispose() :: void〈〉@S,∆,Υ1

[REL−B]

Γ; ∆;Υ⊎{(S, b+k)} ⊢ e :: t1, ∆1,Υ1

Γ; ∆;Υ ⊢ relB(b, k, e) :: t1, ∆1,Υ1

[REL−A]

Γ;∆;Υ ⊢ e :: t1,∆1, Υ1

ǫ={(S, b+k)}

Γ;∆;Υ ⊢ relA(b, k, e) :: t1,∆1,Υ1⊎ǫ

[METH]

Γ1 = Γ ∪ {v1 :: t̂1, .., vp :: t̂p} ∆ = noX (Γ1)∧φpr∧inv(Γ1)
(, , Ni) = Vfield(t̂i), i∈1..p Y =

Sp
i=1 Ni

ǫ = ǫc − {(S, (p+3 � this∈dom(Γ) � p+2))}
∆ ⊢ǫr⊒∅ Γ1; ∆; ǫ ⊢ e :: t, ∆1, Υ1 φpr∧∆1 ⊢Υ1 ⊒ ǫr

∆ ⊢ǫ⊒∅ ⊢ t <: t̂, ρ (∃ prime(Y) · ∆1) ⇒ ρ (φpo)
Υ1(S) = ǫc(S) ǫr(S) = 0

Γ ⊢meth t̂ mn((t̂i vi)i:1..p) where φpr; φpo; ǫc; ǫr {e}

[IMI]

⊢ (A || t̂ mn((t̂i v̂i)i:1..p) where φpr;φpo; ǫc; ǫr{e})∈c〈n∗〉
t = fresh(t̂) t0 = c〈n∗〉@A Γ(vi) = ti i∈0..p

⊢ ti <: t̂i, ρi i∈1..p ρp =
Sp

i=1 ρi ∆1 ⊢ Υ⊒ǫc

ρ = rename(t̂, t)∪ρp∪prime(ρp) ∆≈>V(Γ)∃V(ǫc)∪V(ǫr)·ρ φpr

∆1 = ∆ ◦L ∃Y · ρ(φpr∧φpo) Υ1 = Υ−(ǫc\{S})⊎ǫr

X =
Sp

i=1 V(t̂i) Y = X ∪ prime(X) L =
Sp

i=0 V(ti)

Γ; ∆;Υ ⊢ v0.mn(v1..p) :: t, ∆1,Υ1

Figure 5. Some Type Rules for Memory Checking

Take note that theunify operation merges the post-state con-
straints and memory usages of the two branches together via adis-
junction, as follows:

t = unify(t1, t2) ρi = rename(ti, t), i=1, 2
S = dom(Υ1)∪dom(Υ2) Υ = {(c, nc) | c ∈ S, nc = fresh()}
φ = ρ1(φ1∧

V
c∈S nc=Υ1(c))∨ρ2(φ2∧

V
c∈S nc=Υ2(c))

unify(t1, t2,Υ1, Υ2, φ1, φ2) =df (t, Υ, φ)

τ@A=msst(τ1@A1, τ2@A2) r∗ = fresh()
unify(τ1〈n∗〉@A1, τ2〈m∗〉A2) =df τ〈r∗〉@A

For example, if∆ = (s′=s) and Υ = {(List, 2), (S, 5)}, we can
obtain∆3 = (b′=1∧s′=s+1∧d=1∨b′=0∧s′=s−1∧d=3) andΥ3 =
{(List, d), (S, 5)}. Path-sensitivity adds precision to our analysis
and is instrumental in analysing the memory requirement of recur-
sive methods.

5.5 Method Declaration

Each method declaration is checked to see if its definition iscon-
sistent with the memory usage specification given in its declara-
tion header by the [METH] rule. The initial memory is built from
ǫ=ǫc−{(S, · · ·)} after subtracting the method’s stack frame. The
final available memory of the method bodye is Υ1 which must
not be less that the declared net memory release (as specifiedby
φpr∧∆1 ⊢ Υ1 ⊒ ǫr). Perfect recovery of stack space is mandated
by Υ1(S) = ǫc(S).

For example, consider the following definition ofpush after
explicit stack recovery operations have been inserted.

L | void〈〉@S push(Object〈〉@S o)
where true;n′=n+1; {(List, 1), (S, 5)}; {}

{ List〈〉@U tmp = this.head;
relA(2, 3, this.head = new List(o, tmp))}

Under the above declaration, we haveǫc = {(List, 1), (S, 5)}
andǫr = {}. Lettingeb to denote the body, we could type check the
method, as shown below.

∆1⊢ǫ1⊒{(List, 1)} ǫ2=ǫ1−{(List, 1)}
∆2=∆1◦{n}n′=m′+1

Γ1; ∆1; ǫ1⊢this.head = new List(o, tmp)
:: void〈〉@S,∆2, ǫ2

ǫ3=ǫ2⊎
{(S, 2+3)}

Γ1; ∆1; ǫ1 ⊢ relA(2, 3, this.head = new List(o, tmp)) ::
void〈〉@S, ∆2, ǫ3

Γ;∆; ǫ ⊢ this.head :: List〈s〉@U, ∆∧s=n′, ǫ
Γ1 = Γ + {tmp :: List〈m〉@U} ∆1 = (∆∧m′=n′)

ǫ1=ǫ−{(S, 1)} ∆⊢ǫ⊒{(S, 1)}
Γ;∆; ǫ ⊢ eb :: void〈〉@S, ∆2, ǫ3

Γ = {this :: Stack〈n〉@L, o :: Object〈〉@S}
∆=(n′=n) ǫ = {(List, 1), (S, 5)} − {(S, 4)}

∆2 ⇒ (n′=n+1) ∆2⊢ǫ3⊒{} true⊢ǫ⊒∅
true⊢{}⊒∅ ǫ3(S) = 5 {}(S) = 0

{this :: Stack〈n〉@L} ⊢methvoid〈〉@S push(Object〈〉@S o)
where true; n′=n+1; {(List, 1), (S, 5)}; {} {eb}

Note that∆ = (n′=n) captures the initial size constraint on
method entry, whileǫ captures the available memory after subtract-
ing the method’s stack frame. Also,ǫ3={(S, 5)} is the memory
space that remains after the evaluation of the method body. This
must be no less than the (declared) memory to recover,ǫr. Further-
more, stack recovery is expected to be perfect, withǫ3(S) = ǫc(S).
We also check that postcondition is correct with∆2 ⇒ (n′=n+1).

Behaviour subtyping is supported for method overriding. This is
captured by the [OVERRIDE] rule in Fig 11. Each method which
overrides another is expected to becontravarianton its precondi-
tion (and memory consumption) andcovarianton its postcondition
(and memory releases), in accordance with the subtyping property
of functions.

6. Dynamic Semantics
The dynamic operational semantics is described in small steps.
Notations used are defined as follows.

Locations: ι ∈ Location

Primitives : k ∈ prim = int ⊎ bool ⊎ float

⊎ null ⊎ void

Values: δ ∈ Value= prim⊎ Location

AnnVal: ν ∈ AVal = (A+ × Value)

Aliases: A ∈ A+ = A⊎ UD

Store: ̟ ∈ Store= Location→fin ObjVal

Variable Env.: Π ∈ VEnv= Var →sfin AVal

Avail. Mem.: σ = { (c, kint)∗ | c ∈ CN∪{S}, kint ∈ Z}

Object values: η ∈ ObjVal = Type × (Fd→fin AVal)

Type: τ〈n∗〉 ∈ Type= CN× SV∗

Note thatf : A →sfin B denotes astackablemapping fromA to B.
Such a stackable mapping is defined as:

A →sfin B =df (Aint →fin B, int)

whereint denotes the current frame number of the mapping, while
Aint denotes the domain that has been marked with frame numbers.
Each time a new frame is created, the current frame number is
increased by 1. Frame numbers are useful for formulating thelent-
once (or limited unique) property for stack frames. Main operators
are:

Start a new frame:
newframe(f, n) = (f, n+1)

Push variables into current frame:
(f, n) + {(v 7→ ν)∗} = (f + {(vn 7→ ν)∗}, n)

Pop variables from the topmost frame:
(f, n) − {v∗} =

let f̂ = f \{(vn)∗} in (f̂ , max{m | ∃u · um ∈ dom(f̂)})

The variable environmentΠ is such a stackable mapping. We
write Π[ν/v] to denote an update of the value of the latest vari-
able v in Π to ν. We write Π + {v 7→ ν} to denote an exten-
sion ofΠ to include a binding ofν to v, while Π − {v∗} removes
a subset of the mappings. Similar notations are used for the up-
date and enhancement of object values and stores. In the caseof
store, we use̟ −ι to denote the store obtained from̟ by re-
moving ι from dom(̟). We also provide an abbreviated notation
̟[ν/ι.f] =df let (t, ρ) = ̟(ι) in ̟[(t, ρ[ν/f])/ι]. Given an ob-
ject value,η = (t, ρ), we haveFlds(η) =df ρ andtype(η) =df t.

We maintain alias annotations for variables in the stack and
for fields in the store at run-time. We enhance the current setof
alias annotations with a new value:UD . A variable/field can be
assigned an aliasUD if its original alias annotation wasU, and it
has since relinquished this uniqueness ownership (of its reference).
By maintaining this annotation at run-time (correspondingto dead
set for static semantics), our system (both dynamic and static) is
able to identify all unique references which have been consumed
via read operations. The size and alias instruments are usedonly
for proving the soundness of the type system. They can be erased
without affecting the underlying semantics.

We require some intermediate expressions for the dynamic se-
mantics to follow through. Our syntax is thus extended from the
original expression syntax as follows:

e ::= · · · | ι | ν | ret(v∗, ρ, e)

The expressionret(v∗, ρ, e) is used to capture the result of eval-
uating a local block, or the result of a method invocation. The list
of variables associated withret is the local variables declared and
used by the block. This set of variables is popped from the stack at
the end of the block’s evaluation. We also supplyρ to capture the
mapping of formal parameters to actual arguments for methodcall.
This is used by the soundness proof.

[ELF]

v∗ ⊆ dom(Γ) Γ;Σ; ∆;Υ ⊢ e :: t, ∆1, Υ1

v∗ = {v1, . . . , vp} X = V(Γ(v∗)) Y = X ∪ prime(X)
ρ2 =

S
{ρ̂i | ti = Γ(vi), t̂i = Γ(ρ vi), ⊢ t̂i <: ti, ρ̂i}

p
i=1

Γ; Σ;∆;Υ ⊢ ret(v∗, ρ, e) :: t, ∃Y · (prime(ρ2)∆1), Υ1

[LOC]

Γ;Σ; ∆;Υ ⊢ ι :: Σ(ι)@U, ∆,Υ

[A−DATA]

Γ;Σ; ∆;Υ ⊢ δ :: t, ∆1, Υ1 At = ann(t) At ≤a A

Γ;Σ;∆; Υ ⊢ (A, δ) :: [At 7→ A]t, ∆1,Υ1

Figure 6. Type Rules for Intermediates

The type rules for intermediate expressions are given in Fig6.
The subsumption rules for size and memory are given below.

[SUBS1] : (Covariant)
Γ;Σ; ∆;Υ ⊢ e :: t, ∆1,Υ1 ∆1 ⊢ Υ1 ⊒ Υ2 ∆1 ⇒ ∆2

Γ; Σ;∆;Υ ⊢ e :: t,∆2,Υ2

[SUBS2] : (Contravariant)
Γ;Σ; ∆1; Υ1 ⊢ e :: t, ∆,Υ ∆2 ⊢ Υ2 ⊒ Υ1 ∆2 ⇒ ∆1

Γ; Σ;∆2; Υ2 ⊢ e :: t, ∆,Υ

The dynamic evaluation rules are of the following form.

〈Π, ̟,σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1]

We shall formulate the rules using an exception-style semantics
with four possible errors, namelyE = Err-Alias | Err-Mem | Err-Null
| Err-Prim . Whenever one such error is raised, the evaluation aborts.
This error occurrence can be stated using〈Π, ̟, σ〉 [e] →֒ E. The
complete set of evaluation rules is given in Fig. 7.

7. Soundness

We shall formulate and prove several novel safety properties
that our type system possess. Our alias checking rules ensures
that well-typed programs are subject to several alias properties,
including:

• the uniquenessproperty: all unique references are unaliased
during the evaluation;

• the lent-onceproperty: each unique reference can only be lent
once within each stack frame; and

• theread-onlyproperty:R-mode fields never change during eval-
uation.

We have formally defined and proven all these properties for
an object-based imperative language OIMP in an earlier work [13].
The main new properties to prove concern the safety ofdispose

and the soundness of memory specification. Before stating a theo-
rem on the safety ofdispose, we give several formal definitions.

DEFINITION 1 (Liveness & No-Dangling).

• A runtime valueδ is said to live wrt the store̟, denoted as
live(δ, ̟), if δ is a primitivek, or δ ∈ dom(̟).

• A runtime environment(Π, ̟) is said to beno-danglingwrt the
dead setΘ, denoted asΘ ⊢noDang 〈Π, ̟〉, if the following hold:

∀v∈dom(Π)−Θ · live(snd(Π(v)), ̟)

∀ι∈dom(̟) · (, ρ,)=̟(ι) ∧ (∀f∈dom(ρ)·
live(ι, f, Π,Θ) ⇒ live(snd(ρ(f)), ̟))

[D-Const]

〈Π, ̟, σ〉 [k] →֒ 〈Π, ̟, σ〉 [(S, k)]

[D-Assign-1]
〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1]

〈Π, ̟, σ〉 [w = e] →֒ 〈Π1, ̟1, σ1〉 [w = e1]

[D-Assign-2]
(Π1, ̟1) = upd(Π, ̟, w, ν)

〈Π, ̟, σ〉[w = ν]→֒ 〈Π1, ̟1, σ〉 [(S, ())]

[D-Var-FD]

(Π1, ̟1, ν) = read(Π, ̟, w)

〈Π, ̟, σ〉 [w] →֒ 〈Π1, ̟1, σ〉 [ν]

[D-Dispose]
(Π1, ̟1, σ1) = dispM(Π, ̟, σ, v)

〈Π, ̟, σ〉[v.dispose()]→֒ 〈Π1, ̟1, σ1〉[(S, ())]

[D-RelA]

〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1]

〈Π, ̟, σ〉 [relA(b, k, e)]→֒ 〈Π1, ̟1, σ1〉 [relA(b, k, e1)]

[D-Blk-1]

〈Π, ̟, σ〉 [e1] →֒ 〈Π1, ̟1, σ1〉 [ê1]

〈Π, ̟, σ〉 [t v = e1; e2] →֒ 〈Π1, ̟1, σ1〉 [t v = ê1; e2]

[D-Blk-2]

Π1 = ext(Π, At, v , ν) σ1 = decM(σ, {(S, 1)})

〈Π, ̟, σ〉 [τ〈u∗〉@At v = ν; e2] →֒ 〈Π1, ̟, σ1〉 [ret(v , [], e2)]

[D-Ret-1]
e6=ret(, [],) 〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1]

〈Π, ̟, σ〉 [ret(v∗, ρ, e)]
→֒ 〈Π1, ̟1, σ1〉 [ret(v∗, ρ, e1)]

[D-Ret-2]
ρ2 = []

〈Π, ̟, σ〉 [ret(v∗

1 , ρ1, ret(v∗

2 , ρ2, e))]
→֒ 〈Π, ̟, σ〉 [ret(v∗

1+v∗

2 , ρ1, e)]

[D-Ret-3]
Π1 = Π−{v∗} σ1 = σ⊎{(S, b+k)}

〈Π, ̟, σ〉 [ret(v∗, ρ, relA(b, k, ν))]
→֒ 〈Π1, ̟, σ1〉 [ν]

[D-If-true]

Π(v) = (A, true)

〈Π, ̟, σ〉[if v then e1 else e2]→֒ 〈Π, ̟, σ〉 [e1]

[D-If-false]

Π(v) = (A, false)

〈Π, ̟, σ〉[if v then e1 else e2]→֒ 〈Π, ̟, σ〉 [e2]

[D-IMI] & [D-TIM]

⊢ (Â0 || t̂ mn(t̂1 v̂1, . . . , t̂p v̂p) where · · · {e}) ∈ c〈n∗〉
Âi = ann(t̂i) (Ai, δi) = Π(vi) ∀i ∈ {1..p} (A0, δ0) = Π(v0)

distinct[δi | i ∈ 0..p, δi 6= null, Ai ∈ {U, L}, Âi = L] Π0=Π

v̂0 = this (Πi+1 , ρi+1) = updVE(Πi, v̂i, Âi, vi) ∀i ∈ {0..p}

Πα = newframe(Πp+1)+
Sp+1

i=1 ρi

Πβ = newframe(Πp+1−{u∗})+
Sp+1

i=1 ρi σ0 = {(S, p+3)}
σ1 = decM(σ, σ0) σ2 = decM(σ⊎{(S, b+k)}, σ0)

〈Π, ̟, σ〉 [v0.mn(v1..p)]→֒ 〈Πα, ̟, σ1〉 [ret(v̂0..p, [v̂i 7→vi]
p
i=0 , e)]

〈Π, ̟, σ〉 [ret(u∗, ρ, relB(b, k, v0.mn(v1..p)))]
→֒ 〈Πβ , ̟, σ2〉 [ret(v̂0..p, [v̂i 7→vi]

p
i=0 , e)]

[D-SMI] & [D-TSM]

⊢ (t̂ mn(t̂1 v̂1, . . . , t̂p v̂p) where · · · {e}) ∈ P

Âi = ann(t̂i) (Ai, δi) = Π(vi) ∀i ∈ {1..p}
distinct[δi | i ∈ 1..p, δi 6= null, Ai ∈ {U, L}, Âi = L]

Π0=Π (Πi, ρi) = updVE(Πi−1, v̂i, Âi, vi) ∀i ∈ {1..p}
Πα = newframe(Πp)+

Sp
i=1 ρi

Πβ = newframe(Πp+1−{u∗})+
Sp

i=1 ρi σ0 = {(S, p+2)}
σ1 = decM(σ, σ0) σ2 = decM(σ⊎{(S, b+k)}, σ0)

〈Π, ̟, σ〉 [mn(v1..p)] →֒ 〈Πα, ̟, σ1〉 [ret(v̂1..p, [v̂i 7→vi]
p
i=1 , e)]

〈Π, ̟, σ〉 [ret(u∗, ρ, relB(b, k, mn(v1..p)))]
→֒ 〈Πβ , ̟, σ2〉 [ret(v̂1..p, [v̂i 7→vi]

p
i=1 , e)]

[D-SMI-Prim]

⊢ t̂ mn((t̂ v̂)1..p) where φpr; φpo; ǫc; ǫr ∈ P

Âi = ann(t̂i) (Ai, δi) = Π(vi) ∀i = 1..p

distinct[δi | i ∈ 1..p, δi 6= null, Ai ∈ {U, L}, Âi = L]

Π0=Π (Πi, ρi) = updVE(Πi−1, v̂i, Âi, vi) ∀i ∈ {1..p}
(̟1, ν) = callPrim(mn, [(Â1, δ1), . . . , (Âp, δp)], ̟)

〈Π0, ̟, σ〉 [mn(v1, . . . , vp)] →֒ 〈Πp, ̟1, σ〉 [ν]

[D-New]

fdList(c〈n∗〉) = ([τi〈m
∗

i 〉@Ai fi]
p
i=1, φ)

(Πi, ρi) = updVE(Πi-1, fi, [R 7→S]Ai, vi), i∈1..p
r∗ = fresh() η = (c〈r∗〉,

Sp
i=1 ρi)

ι = fresh() ̟1 = ̟+{ι 7→η}
σ1 = decM(σ, {(c, 1)})

〈Π0, ̟, σ〉 [new c(v1..p)] →֒ 〈Πp, ̟1, σ1〉 [(U, ι)]

read(Π, ̟, v) =
(A, δ) = Π(v);
if A ∈ {UD , L} throw Err-Alias ;
(Π[([U 7→ UD]A, δ)/v], ̟, (A, δ));

read(Π, ̟, v.f) =
(A, δ) = Π(v);
if A = UD throw Err-Alias ;
if δ = null throwErr-Null ;
(Af , δf) = ̟(δ)(f);
if Af = UD throwErr-Alias ;
(Π, ̟[([U 7→ UD]Af , δf)/δ.f], ([R 7→ S]Af , δf));

upd(Π, ̟, v, (As, δs)) =
(A, δ) = Π(v);
if (A = L)∨((As 6≤a A)) throwErr-Alias ;
(Π[([UD 7→ U]A, δs)/v], ̟);

upd(Π, ̟, v.f, (As, δs)) =
(A, δ) = Π(v);
if A = UD throwErr-Alias ;
if δ = null throw Err-Null ;
(Af , δf) = Flds(̟(δ))(f);
if (Af = R)∨(As 6≤a Af) throwErr-Alias ;
(Π, updSize(δ, Π, ̟[([UD 7→ U]Af , δs)/δ.f]));

ext(Π, At, v, (A, δ)) =
if (A 6≤a At) throw Err-Alias ;
Π + {v 7→(At, δ)};

dispM(Π, ̟, σ, v) =
(A, δ) = Π(v);
if δ = null throwErr-Null ;
if A 6= U throw Err-Alias ;
Π1 = Π[(UD, δ)/v]; (c, ρf , ρs) = ̟(δ);
(Π1, ̟−δ, σ⊎{(c, 1)})

decM(σ1, σ2) =
if ¬((σ1−σ2)⊒∅) throw Err-Mem ; (σ1−σ2)

updVE(Π, vt, At, v) =
(As, δs) = Π(v);
if (As=UD)∨(As 6≤aAt) throw Err-Alias ;
ρ = if (At 6=L)∧(As=U) then[U 7→ UD] else[];
ρ1 = if (At=L)∧(As=S) then[L 7→ S] else[];
(Π[(ρAs, δs)/v], {vt 7→(ρ1At, δs)});

callPrim(mn, [ν1, . . . , νp], ̟) =
(̟1, ν, flag) = primOp(mn, [ν1, . . . , νp], ̟);
if flag = false throwErr-Prim ; (̟1, ν)

Figure 7. Dynamic Semantics

Note thatlive(ι, f, Π,Θ) =df ¬(∃v∈dom(Π)·Π(v)=(, ι)∧ v.f∈Θ),
while snd((A, δ)) =df δ.

DEFINITION 2 (Alias Consistency).The alias consistency rela-
tion between static and dynamic semantics is defined as follows:

dom(Π) = dom(Γ) dom(̟) = dom(Σ)

∀v ∈ dom(Γ) · (v 6∈ Θ ⇒ ann(Π(v)) ≤a ann(Γ(v)))

∀ι ∈ dom(̟) · ρ = Flds(̟(ι)) ∧ ∀f ∈ dom(ρ) ·

(live(ι, f, Π,Θ) ⇒ ann(ρ(f)) ≤a ann-fd(Σ(ι), f))

Θ ⊢noDang 〈Π, ̟〉 ∀ι ∈ locs(e) · ι ∈ dom(̟)

Γ;Σ; Θ|=A〈Π, ̟〉

Note thatann-fd(c〈u∗〉, f) =df A, where(τ〈m∗〉@A f) ∈ c〈n∗〉. We
uselocs to collect all intermediate locations appearing ine:

locs(e) =df casee of
ι → {ι}
ret(v∗, ρ, e) | w = e | relA(k1, k2, e)
| relB(k1, k2, e) | (t v = e; e2) → locs(e)
if v then e1 else e2 | v.dispose()
| k | w | new c(v∗) | [v.]mn(v∗) → ∅

The following theorem states that no-dangling property is pre-
served (together with other alias consistency properties)during
evaluation of well-typed expressions.

THEOREM 1 (No-Dangling).If

Γ;Σ;Θ ⊢ eraseS(e) :: t,Θ1

Γ;Σ; Θ|=A〈Π, ̟〉

〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1]

then there existΓα, Θα, andΣα ⊇ Σ, such that

Γ − diff(e, e1) = Γα − diff(e1, e)

Γα; Σα; Θα ⊢ eraseS(e1) :: t, Θ1

Γα; Σα; Θα|=A〈Π1, ̟1〉

Note thateraseS(e) denotes the expression obtained by erasing all
size annotations frome. Functiondiff(e, e1) returns a list of local
variables that appears ine but note1 :

diff(e, e1) =df let lst = local(e)
lst1 = local(e1)
n = length(lst) − length(lst1)

in (take(n, lst) � n ≥ 0 � [])
take(n, lst) =df ([] � n≤0 � [hd(lst)]++take(n−1, tl(lst)))

Functionlocal(e) returns a list of sets of local variables. It is defined
as follows:

local(e) =df casee of
ret(v∗, ρ, e) → local(e)++ [{v∗}]
w = e | relA(k1, k2, e) | relB(k1, k2, e) → local(e)
(t v = e1; e2) → local(e1)
if v then e1 else e2 | δ | w
| new c(v∗) | [v.]mn(v∗) | v.dispose() → []

Note thatΓ − [] =df Γ, Γ − ([s]++ S) =df (Γ − s) − S.

Proof: By induction over the depth of alias-type derivation for ex-
pressioneraseS(e). Details are given in the Appendix. 2

Before presenting our main theorem, we define the overallcon-
sistency relationbetween static and dynamic semantics as follows.

DEFINITION 3 (Consistency Relation).

Γ;Σ; Θ|=A〈Π, ̟〉

DΘ = prime(
S

w∈Θ{Z | Γ ⊢ w :: t, φ, Z})

∀v ∈ dom(Γ) · ∆v = size(Γ(v), Π(v), ̟)

X = (V(∆) − prime(V(Γ))) ∪ DΘ

∆Π = ∧v∈dom(Γ)∆v ∆Π ⇒ ∃X · ∆ ∆ ⊢ σ ⊒ Υ

Γ;Σ; ∆;Θ;Υ |= 〈Π, ̟, σ〉

In the above,size computes the size of a run-time value, and
presents it in constraint form. It is defined as follows:

size(int〈r〉, (A, k), ̟) =df (r′ = k)
size(bool〈r〉, (A, k), ̟) =df (r′ = (1 � k = true � 0))
size(cn〈r∗〉, (A, ι), ̟) =df let (cn〈n1..p〉, ρf) = ̟(ι)

ρ = getSize(ι, ̟)
in ∧p

i=1 {r′i = (ρ ni)}
size(t, (A,), ̟) =df True

getSize:: (Location× Store) → (SV→fin int)
getSize(ι, ̟) = getSize1(ι, ̟, [ι])
getSize1(ι, ̟, activeLst) =

fdList(cn〈n1..q〉) = ([τi〈m
∗
i 〉@Âi fi]

p
i=1, φ);

(cn〈r1..q〉, {fi 7→ (Ai, δi)}
p
i=1) = ̟(ι);

ρ = [];
ρι = {ni 7→ ri}i=1..q ;
forall i = 1, .., p {

if (τi = int) ρ = {mi 7→ δi} ⊎ ρ;
if (τi = bool) ρ = {mi 7→ 1 � δi = true � 0} ⊎ ρ;
if (τi = float | void) ρ = {mi 7→ 0} ⊎ ρ;
if (member(δi, activeLst)) ρ = {mi 7→ 0} ⊎ ρ
else{ ρ1 = getSize1(δi, ̟, add(δi, activeLst));

ρ = ρ1 ⊎ ρ}
}

⊎{(ριni) 7→ (ρ αi) | φ = ∧i=1..q(ni = αi)}

The following main theorem states that each well-typed expres-
sion preserves its type under reduction with a runtime environment
and a store which are consistent with the compile-time counter-
parts. Furthermore, the final size constraint is consistentwith the
value obtained on termination.

We useΓ;Σ;∆; Θ;Υ ⊢ e :: t, ∆1, Θ1, Υ1 to represent the overall
type judgement. That is,

Γ;Σ; Θ ⊢ eraseS(e) :: eraseS(t), Θ1 Γ;Σ; ∆;Υ ⊢ e :: t, ∆1, Υ1

Γ;Σ; ∆;Θ;Υ ⊢ e :: t, ∆1,Θ1, Υ1

THEOREM2 (Preservation).

(a) (Expression) If

Γ;Σ; ∆;Θ;Υ ⊢ e :: t, ∆1,Θ1, Υ1

Γ;Σ;∆; Θ;Υ |= 〈Π, ̟, σ〉

〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1]

then there existΣα ⊇ Σ, Γα, ∆α, Θα, andΥα, such that

Γ − diff(e, e1) = Γα − diff(e1, e)

Γα; Σα;∆α; Θα; Υα ⊢ e1 :: t, ∆1, Θ1, Υ1

Γα; Σα;∆α; Θα; Υα |= 〈Π1, ̟1, σ1〉 .

(b) (Value) If

Γ;Σ;∆; Θ;Υ ⊢ (A, δ) :: t, ∆1,Θ1; Υ1

Γ;Σ;∆; Θ;Υ |= 〈Π, ̟, σ〉

then the following holds:

Θ = Θ1

Γ + {x :: t}; Σ;∆2; Θ1; Υ2 |= 〈Π + {x 7→ (A, δ)}, ̟, σ1〉

wherex = fresh() , ∆2 = [v 7→ v′]v∈V(t)∆1, and
Υ2 = Υ1 ⊎ {(S, 1)}, σ1 = σ ⊎ {(S, 1)}.

Proof: By induction over the depth of type derivation for expres-
sione. Details are given in the Appendix. 2

The second safety theorem on progress captures the fact that
well-typed programs cannot go wrong. Specifically, this theorem
guarantees that no memory adequacy errors (denoted byErr-Mem)
are ever encountered for well-typed MEMJ programs, as follows:

THEOREM3 (Progress).If
Γ;Σ; ∆;Θ;Υ ⊢ e :: t, ∆1,Θ1, Υ1 and Γ; Σ;∆;Θ;Υ |= 〈Π, ̟, σ〉 ,

then eithere is a value, or〈Π, ̟, σ〉 [e] →֒ Err-Null , or there exist
Π1, ̟1, σ1, e1 such that〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1].

Proof: By induction over the depth of type derivation for expres-
sione. Details are given in the Appendix. 2

8. Memory Inference
The goal of memory inference is to derive heap usage effects for
each method. We provide a summary-based approach that consid-
ers each set of strongly-connected methods (bottoms-up order) for
inference through the following steps:

• Calculate symbolic program state, build constraint abstraction
and collect memory adequacy constraints.

• Solve constraint abstraction using fixpoint analysis.

• Derive memory availability.

• Derive memory requirement.

Formally, the type inference rule for expression has the form:

Γ;∆;Υ ⊢ e :: t,∆1,Υ1,Φ

where type environmentΓ maps variables to their annotated types,
Υ(Υ1) are memory available before and after evaluation ofe, re-
spectively,∆(∆1) are the symbolic program states before and after
evaluation of expressione, respectively.Φ is a set of(∆, ϕ) pairs
whereϕ is the constraint that enforces memory adequacy and∆ is
the program state whereϕ was generated. We carry the program
state along to allow memory requirement to be accurately derived
and suitably simplified.

The inference rule for methods has the following form:

Γ ⊢meth meth→֒ meth1 | Q

whereΓ is empty for static methods orΓ contains a singlethis
entry for instance methods. The methodmeth1 is the transformed
version ofmethwhere memory effects annotations are added. The
constraint abstractionQ captures the relations between the sizes of
the method’s parameters and its memory effects.

In our approach, we compute memory availability in a forward
manner, taking into account conditional paths and the memory con-
sumption/release for each subexpression. Simultaneously, we also
gather memory requirement in a backward manner by expressing
the safety of each consumption in terms of a memory adequacy
constraint on the original parameters. As stated, we capture these
two pieces of information as a pair(∆, ϕ) for each program point
where a memory consumption is required. Full details of memory
inference system and its implementation is described in [28]. In this
paper, we highlight key features of our memory inference system.

8.1 Deriving Memory Requirements

We can convert each memory adequacy constraintϕ into a memory
requirement by the following formula:pre≡ ∆ ≈>V(ϕ) ϕ, where∆
is the symbolic state at the program point whereϕ is generated. We
may then projectpre as a formula of the method’s parametersU , as
follows:

∀W · pre where W=V(pre)−U

This projection effectively eliminates all free size variables in a
formulaeφ by means of universal quantification, except for those
specified inU . For example, consider:

f(n) = if n ≤ 0 then allocate 3 Objects
else allocate 2 Objects; f(n− 1)

Using our inference method, we can derive a memory require-
ment {(Object, d)} for this method, together with the constraint
(n≤0∧d=3)∨(n>0∧d=2n+3) that will be added to the method’s

precondition. Disjunction is used to help capture memory effects
accurately, where possible.

8.2 Fixpoint Analysis

For each recursive method, we construct a constraint abstraction
that relates the sizes of the input parameters, the amount ofmemory
available at the beginning of the method to the sizes of the parame-
ters and the amount of memory available prior to the recursive call.
This one-step relation is subjected to a fixpoint procedure to com-
pute its multi-step relation. LetI〈n∗, m∗, n̂∗, m̂∗〉 be the one-step
relation. The fixpoint computation is formulated below withn∗ and
m∗ being the sizes of the input parameters and memory available
at the beginning, whereaŝn∗ andm̂∗ are those of the recursive call.

I1〈n
∗, m∗, n̂∗, m̂∗〉 = I〈n∗, m∗, n̂∗, m̂∗〉

Ii+1〈n
∗, m∗, n̂∗, m̂∗〉 = Ii〈n

∗, m∗, n̂∗, m̂∗〉∨
∃n∗

0, m
∗
0 · Ii〈n

∗
0 , m∗

0, n̂
∗, m̂∗〉 ∧ I〈n∗, m∗, n∗

0 , m∗
0〉

For the computation to converge, we may need to apply standard
techniques such as hulling and widening [15].

For example, consider the following one-step relation for the
moverec2method from Sec 4.

moverec2〈a, b, p,m, â, b̂, p̂, m̂〉 =

â=a∧b̂=b+1∧p̂=p−1∧m̂=m−1

Following fix-point analysis, we obtain:

moverec2〈a, b, p, m, â, b̂, p̂, m̂〉 =

â=a∧p̂−p=b−b̂∧m̂=m+p̂−p∧b<b̂

From this, our inference can derive both the expected memory
requirement and memory availability.

9. Implementation
We have constructed a type checker for MEMJ, and have also
built a preprocessor to allow a more expressive language to be
accepted. The entire prototype was built using the Glasgow Haskell
compiler[29] where we have added a library (based on [30]) for
Presburger arithmetic constraint-solving.

The main objective of our initial experiments is to show that
our memory usage specification mechanism is expressive and that
such an advanced form of type checking is viable. We converted
to MEMJ a set of programs from the Java version of the Olden
benchmark suite [8] and another set of smaller programs from
the RegJava benchmark[14], before subjecting them to memory
adequacy checking.

Figure 8 summarises the statistics obtained for each program
that we have verified via our type checker. Column 3 illustrates the
size and memory annotation overheads which must be made in the
header declarations of each class and method. Columns 4 and 5
highlight the CPU times used (in seconds) for alias and memory
checking, respectively. Our experiments were done under Redhat
Linux 9.0 platform on Pentium 2.4 GHz with 768MB main mem-
ory. Except for theperimeterprogram (which has more conditionals
from using a quadtree data structure), all programs take under 10
seconds to verify, despite them being of moderate sizes. We at-
tribute this to the fact that memory declarations are verified in a
modular fashion for each method definition. We achieve this despite
our reliance on Presburger arithmetic whose worst case timecom-
plexity is exponential in the size of formula being solved. The last
column highlights the number of methods that have been success-
fully verified as using memory spaces that are bounded by symbolic
Presburger formulae.Ackermannfunction couldnot be so bounded,
as it requires a stack space that is exponential in the size ofits orig-
inal input. A function inVoronoi also has an allocation inside a loop

Programs Size (lines) Checking (in sec.) Verified
Source Ann. Alias Memory Methods

bisort 340 7 0.01 2.56 6/6
em3d 462 19 0.05 1.14 20/20
health 562 22 0.05 6.37 15/15
mst 473 31 0.02 1.26 22/22

power 765 24 0.06 4.28 19/19
treeadd 195 6 0.02 0.32 4/4

tsp 545 10 0.02 3.54 9/9
perimeter 745 12 0.02 21.81 8/8
n-body 1128 31 0.60 1.25 22/22
Voronoi 1000 45 0.03 3.51 39/40

stack 122 12 0.01 0.08 10/10
sieve 88 7 0.01 0.09 6/6

m-sort 183 13 0.01 0.36 12/12
life 164 9 0.02 2.95 7/7

Ackermann 15 1 0.01 0.17 0/1
Mandelbrot 194 11 0.01 1.72 10/10
Reynolds3 98 6 0.01 0.18 4/4

Figure 8. Type Checking Experimental Results

that couldnot be bounded by our system. This is due to a com-
plex termination condition used that could not be captured by Pres-
burger arithmetic. We have also conducted memory inferenceon
our benchmark programs. The current prototype inference system
takes between 4 to 10 times longer than the type-checking system.

We have also conducted a set of experimental results to evaluate
on the effectiveness of memory inference, in conjunction with
our explicit memory recovery scheme. We modified IBM’s Jikes
RVM[2, 25] to provide support for explicit dispose operation and
instrumented its memory system to capture total allocation(c) and
actual high watermark (b). We then compare it against the predicted
memory requirement (a) from our memory inference. We count the
number of objects created and reused. As can be seen in Fig 9, our
memory inference is accurate for four out of the five programsfrom
the RegJava benchmark. We are conservative on Reynolds program
as one of its memory requirement islog(n) which is approximated
to n in the Presburger constraint. Alternatively, if the depth of tree
had been used as a parameter, our inference would also be precise
on the Reynolds example. Except forsieve, most of the programs
have high degree of memory reuse which were facilitated by our
use of thedisposeoperation for explicit memory recovery.

10. Related Work

Past research on improving memory models for object-oriented
paradigm has focused largely on efficiency, minimization and
safety. We are unaware of any prior work on analysing heap mem-
ory usage by OO programs for the purpose of checking for memory
adequacy. The closest related work on memory adequacy are based
on first-order functional paradigm, where data structures are mostly
immutable and thus easier to handle. We shall review two recent
works in this area before discussing other complimentary works.

Hughes and Pareto [24] proposed a type and effect system
on space usage estimation for a first-order functional language, ex-
tended with region language constructs of Tofte and Talpin’s[34].
Their sized-region type system maintains upper bounds on the
height of the run-time stack, and on the memory used by regions.
The use of region model facilitates recovery of heap space. How-
ever, as each region is only deleted when all its objects become
dead, more memory than necessary may be used, as reported by
[4]. Stack usage has been modelled in Hughes and Pareto’s work,
but tail-call optimization is not supported.

More recently, Hofmann and Jost [23] proposed a solution to
obtain linear bounds on the heap space usage of first-order func-

tional programs. A key feature of their solution is the use oflinear
typing which allows the space of each last-use data constructor (or
record) to be directly recycled by a matching allocation. With this
approach, memory recovery can be supported within each func-
tion, but not across functions unless the dead data structures are
explicitly passed. (For example, they cannot handle themoverec

andemptyStack methods since these methods require space reuse
across functions.) Moreover, their model does not track thesym-
bolic sizes of data structures. Nevertheless, one significant ad-
vance of their work is an inference mechanism for memory ef-
fects through linear programming (LP) technique. This technique
is similar to the derivation framework proposed by Rugina and
Rinard[32] for inferring symbolic bounds. The main advantage of
LP technique is that no fix-point analysis is required. However, it
restricts the expected memory effects to a linear form without dis-
junction.

In support of component-based software, Krone et.al. [26] pro-
posed an approach to modular verification of performance (time
and space) constraints using pre and post contracts. However, their
framework appears to be at a preliminary stage as neither an im-
plementation nor a specific verification technology has beenre-
ported. Recently, there have also been several works on analysing
the stack space requirement for interrupt-driven programs. Brylow
et.al. [7] proposed a stack size analysis using context-free reach-
ability algorithm based on model checking. Chatterjee et.al. [10]
investigated the complexity on the stack boundedness problem and
the exact maximum stack size problem. Regehr et.al. [31] enhanced
previous work with a more accurate context-sensitive abstract inter-
pretation and also advocated for function inlining to reduce stack
depth. These techniques apply to a class of interrupt-driven pro-
grams but are neither applicable to recursive programs nor to those
whose stacks depend on some loop bounds.

Other related works on improving memory models are re-
viewed here. Chen et. al. [11] reported the use of heap compres-
sion techniques to support memory-constrained Java applications.
They proposed a set of memory management strategies and as-
sociated garbage collection algorithms to reduce heap footprint
of embedded Java applications that execute under severe mem-
ory constraints. The key techniques employed are object compres-
sion, lazy allocation and object break-down. On a set of embedded
Java applications, they reported noticeable reduction of heap space
requirement, while performance degradations are fairly small in
most cases. Berger, Zorn and Mckinley [4] generalized regions and
heaps, by allowing programmers to delete individual objects while
keeping the high performance of regions. They showed that this
approach can reduce memory consumption significantly. Ananian
and Rinard [3] presented a set of techniques for reducing themem-
ory consumption of object-oriented programs, by optimizing on the
representation of object fields.

These recent works on optimizing memory systems are com-
plimentary to our current efforts on analysing memory usage. As
a matter of fact, we have considered how the present work could
be applied to region-based memory management system[12]. As
already confirmed by others[21, 4], we expect noticeable perfor-
mance improvements when regions are size bounded with explicit
recovery. In the opposite direction, we expect region-based system
to further provide timely recovery for shared objects that have be-
come dead, providing us with tighter memory bounds.

11. Concluding Remarks
We have proposed a memory usage type system for a non-trivial
object-oriented core language. We have designed a flexible specifi-
cation mechanism to allow memory needs of user programs to be
declared abstractly, and then verifies if memory adequacy property
holds for the given definitions. Our approach requires heap space

Program Input Size Prediction (a) Actual (b) Allocation (c) Reuse (b/c) Accuracy (b/a)
sieve 10000 10000 9999 10000 0.9999 0.9999

m-sort 10000 20000 20000 287232 0.0696 1.0000
life 1000 2 2 1000 0.0020 1.0000

Mandelbrot 100 4 4 83692 0.00005 1.0000
Reynolds 10000 40000 20014 40000 0.5004 0.5004

Figure 9. Experimental Results on Memory Prediction and Recovery

to be explicitly deallocated, which can be handled automatically.
We have also built a prototype type checker to confirm the viabil-
ity and practicality of our approach. We envision our framework
to be useful for embedded system, where memory is consideredto
be a critical resource. We also envision the synergy of predicable
memory bounds with region-based memory management systems.
In particular, bounded memory regions can result in better perfor-
mance. Synergistically, region-based system can provide timely re-
covery for shared objects that are dead, providing us with tighter
memory bounds.
Acknowledgement The authors would like to acknowledge the
invaluable help of Florin Craciun with the evaluation of a set of
the benchmark programs.

References
[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotation for

Program Understanding. InACM OOPSLA, Seattle, Washington,
November 2002.

[2] B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel,
D. Lieber, M. Mergen, T. Ngo, J. Shepherd, and S. Smith. Implement-
ing Jalapẽno in Java. InACM OOPSLA, Denver, Colorado, November
1999.

[3] C.S. Ananian and M. Rinard. Data Size Optimization for Java
Programs. InProceedings of the ACM Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES ’03), San Diego,
California, June 2003.

[4] E. D. Berger, B. G. Zorn, and K. S. Mckinley. Reconsidering Custom
Memory Allocation. InACM OOPSLA, November 2002.

[5] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership
Types for Safe Region-Based Memory Management in Real-Time
Java. InACM PLDI, San Diego, California, June 2003.

[6] J. Boyland, J. Noble, and W. Retert. Capabilities for Sharing: A
Generalization of Uniqueness and Read-Only. InECOOP, Budapest,
Hungary, June 2001.

[7] D. Brylow, N. damgaard, and J. Palsberg. Static Checkingof Interrupt-
Driven Software. InProceedings of the International Conference on
Software Engineering, Toronto, Canada, May 2001.

[8] M. C. Carlisle and A. Rogers. Software caching and computation
migration in Olden. In4th Principles and Practice of Parallel
Programming, Santa Barbara, California, May 1993.

[9] E. C. Chan, J. Boyland, and W. L. Scherlis. Promises: Limited
Specifications for Analysis and Manipulation. InProceedings of the
International Conference on Software Engineering, pages 167–176,
Kyoto, Japan, April 1998.

[10] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. A. Henzinger, and
J. Palsberg. Stack Size Analysis for Interrupt-Driven Programs.
In Proceedings of the 10th Annual International Static Analysis
Symposium (SAS ’03), LNCS 2694, pages 109–126, San Diego,
California, June 2003.

[11] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske,
and M. Wolczko. Heap Compression for Memory-Constrained Java
Environments. InACM OOPSLA, October 2003.

[12] W.N. Chin, F. Craciun, S.C. Qin, and M. Rinard. Region Inference
for an Object-Oriented Language. InACM PLDI, Washington, D.C.,
June 2004.

[13] W.N. Chin, S.C. Khoo, and S.C. Qin. A Sized Type System for Objects
with Alias Controls. Technical report, SoC, Natl Univ. of Singapore,
January 2004. avail. at http://www.comp.nus.edu.sg /∼qinsc/papers/
sizedtype.ps.gz.

[14] M. V. Christiansen and P. Velschow. Region-Based Memory
Management in Java. Master’s Thesis, Department of Computer
Science (DIKU), University of Copenhagen, 1998.

[15] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. InACM POPL, pages 84–96. ACM
Press, 1978.

[16] K. Crary, D. Walker, and G. Morrisett. Typed memory management
in a calculus of capabilities. InACM POPL, pages 262–275, San
Antonio, January 1999. ACM Press.

[17] Robert DeLine and Manuel Fahndrich. Enforcing high-level protocols
in low-level software. InProceedings of the ACM Conference on
Program Language Design and Implementation, June 2001.

[18] M. Fahndrich and R. Leino. Declaring and checking non-null types
in an object-oriented language. InACM OOPSLA, Anaheim, CA,
October 2003.

[19] Manuel Fahndrich and Robert DeLine. Adoption and focus: Practical
linear types for imperative programming. InProceedings of the ACM
Conference on Program Language Design and Implementation, June
2002.

[20] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, andJ. Cheney.
Region-Based Memory Management in Cyclone. InACM PLDI, June
2002.

[21] N. Hallenberg, M. Elsman, and M. Tofte. Combining Region Inference
and Garbage Collection. InACM PLDI, Berlin, Germany, June 2002.

[22] C. A. R. Hoare and J. He.Unifying Theories of Programming.
Prentice-Hall, 1998.

[23] M. Hofmann and S. Jost. Static prediction of heap space usage for first
order functional programs. InACM POPL, New Orleans, Louisiana,
January 2003.

[24] J. Hughes and L. Pareto. Recursion and Dynamic Data-Structures
in Bounded Space: Towards Embedded ML Programming. InPro-
ceedings of the International Conference on Functional Programming
(ICFP ’99), September 1999.

[25] IBM. JikesTM Research Virtual Machine (RVM). http://www-
124.ibm.com/developerworks/oss/jikesrvm/.

[26] J. Krone, W. F. Ogden, and M. Sitaraman. Modular verification of
performance constraints. Technical Report RSRG-03-04, Department
of Computer Science, Clemson University, Clemson, SC 29634-0974,
May 2003.

[27] L. Lamport. The temporal logic of actions.ACM Trans. on
Programming Languages and Systems, 16(3):872–923, May 1994.

[28] Huu Hai Nguyen. Memory Usage Inference for Object-Oriented
Programs. Technical report, CS Programme, Singapore-MIT Alliance,
July 2004. (Term Paper).

[29] S Peyton-Jones and et al. Glasgow Haskell Compiler. http://www.haskell.org/
ghc.

[30] W. Pugh. The Omega Test: A fast practical integer programming
algorithm for dependence analysis.Communications of the ACM,
8:102–114, 1992.

[31] J. Regehr, A. Reid, and K. Webb. Eliminating Stack Overflow by
Abstract Interpretation. InProceedings of the 3rd International

Conference on Embedded Software, Philadelphia, PA, October 2003.
Springer-Verlag.

[32] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. InACM PLDI, pages
182–195. ACM Press, June 2000.

[33] M. Tofte and J. Talpin. Implementing the Call-By-Valueλ-calculus
Using a Stack of Regions. InACM POPL, January 1994.

[34] M. Tofte and J. Talpin. Region-based memory management.
Information and Computation, 132(2), 1997.

APPENDIX

12. Alias Checking Rules
The set of alias checking rules are given in Fig. 10.

The auxiliary relationΘ ⊢ consumeU(w, A),Θ1 (named [AUX1])
addsw to thedead set, if A is unique. This relation ensures that
uniqueness is not consumed twice, and that each object and its field
are not both dead at the same time. These requirements prevent
aliases from occurring for unique objects.

The rules for object creation and method call must ensure that
U-mode parameters consume uniqueness, and thatL-mode para-
meters adhere to the lent-once policy. In addition, it must en-
sure that each unique object meets the field uniqueness invari-
ant requirement before being passed into a method. The relation
Θ,Λ ⊢ conUL(v, tS , tT), Θ1,Λ1 (named [AUX2]) helps ensure the
above. It checks that each variablev is neither lent twice, nor has its
uniqueness consumed twice. Note thatΛ captures unique variables
which are temporarily lent out. In addition, fields of such parame-
ters must not be in the dead-set.

13. Other Language Features
Our implementation also supports several other language features,
including downcast,while-loop and a field-binding construct.
Their alias checking and sized-type rules are shown in Figure 12.

For the downcast operation, we allow both the class type and its
alias annotation to be changed. Run-time test can then be used to
ascertain the validity of each downcast request.

We also provide direct support forwhile-loop construct. The
reason for doing so is that tail-recursion is not able to handle cer-
tain loops due to the use of the pass-by-value parameter mecha-
nism. Our solution is to analyse eachwhile loop using its corre-
sponding tail-recursive function but with two deviations,namely (i)
no stack frames are created (ii) use of pass-by-reference parame-
ter mechanism. We achieve this using a set of three rules, named
[WHILE−METH], [WHILE−CALL] and [WHILE]. Take note that
each loop of form(while e1 do e2) is equivalent to awhile-call
m(v1..p) with the following definition.

void〈〉@S m((t̂i vi)i:1..p) where φpr;φpo; ǫc; ǫr

{if e1 then e2; m(v1..p) else ()}
To support precise size-tracking, we also provide a field-binding

construct which binds the fields of an unaliased object to a set of
local variables, as follows:

bind (v1..p) = v in e

Such a construct allows the fields of an objectv to be temporarily
lent-out to a set of local variables,{v1..vp}, in the scope of the
expressione. Any update to the local variables is considered as
an update to the corresponding field of the objectv itself. Thebind
construct is particularly important for objects whose sizeproperties
are built from more than one components, such as theTree class
below.

class Tree〈n〉 where n=1+a+b ; n≥0 {
int〈v〉@S val;
Tree〈a〉@U left;
Tree〈b〉@U right;

}

Due to a dependency on multiple components, each separate
access to the left or right subtree of each node is unable to preserve
any relation between a single subtree and its parent. With the bind

construct, the uniqueness of objectv is preserved. Moreover, we
are able to preserve the size relation of the node with its two
subtrees at both the entry and exit of the expression body. This
preservation is required for precise size tracking of each node, and
is especially relevant when the subtrees are being updated.As an
example, consider the following method for inserting a nodeinto a
binary search tree.

Tree〈r〉@U insert(Tree〈n〉@U t, int〈v〉@S v)
where d = n; r=n+1; {(Tree, 1), (S, d + 5)}, {}

{if isNull(t) then new Tree(v, null, null)
else bind (i, l, r) = t in

if v < i then l = insert(l, v)
else r = insert(r, v);
t

}
Take note that we are able to predict that the size of the output

tree is one more than its input. If we had used the following code,
without thebind construct, our type system can only verify a less
precise specification.

Tree〈r〉@U insert(Tree〈n〉@U t, int〈v〉@S v)
where true; true; {(Tree, 1), (S, d + 5)}, {}

{if isNull(t) then new Tree(v, null, null)
else {if v < i then t.left = insert(t.left, v)

else t.right = insert(t.right, v);
t}

}
We are currently investigating techniques for the automatic in-

sertion ofbind construct into MEMJ programs.

14. Proofs
The proofs for Theorem 1 and Theorem 2 require a lemma, called
assumption weakening lemma, that states that the static judgment
remains valid despite a variation of its assumption. This assumes
the store typeΣ to have unbounded mapping of locations to types.
However, the type environmentΓ takes the form of stackable map-
ping between variables and types, and is allowed to grow (by push-
ing in new mappings) and shrink (by popping out mappings from
stack). The lemma states that such change to type environment pre-
serves the type judgment, if the change are properly constrained.

LEMMA 1 (Assumption Weakening). Given that the following
judgments hold:

Γ;Σ; Θ ⊢ eraseS(e) :: eraseS(t), Θ1

Γ; Σ;∆;Υ ⊢ e :: t,∆1,Υ1

LetΓα andΣα be such that:

Vu(∆) ⊆ V (Γα) V (t) ∩ V (Γα) = ∅
(vars(e) ∪ {v | v ∈ Θ ∨ ∃f · v.f ∈ Θ}) ⊆ dom(Γα)

∃v∗ · (Γ − {v∗} = Γα) ∨ (Γα − {v∗} = Γ)
Σα ⊇ Σ

Then,
Γα; Σα; Θ ⊢ eraseS(e) :: eraseS(t), Θ1

Γα; Σα;∆; Υ ⊢ e :: t, ∆1,Υ1

Note thatvars(e) returns all variables occurring ine.
Proof: By structural induction: the first judgement is based on alias
checking rules, while the second is based on type rules with size
and memory analysis.

The proof of Theorem 2 also relies on the following lemma.

LEMMA 2 (Redundant Memory).If

Γ; Σ;∆;Υ ⊢ e :: t,∆1,Υ1

[A:NULL]

Γ; Θ ⊢ (c)null :: c@U, Θ

[A:PRIM]

Γ; Θ ⊢ kprim :: prim@S, Θ

[A:VAR−FD]

Γ(w) = t A = ann(t) A 6= L Θ ⊢ consumeU(w, A), Θ1

Γ; Θ ⊢ w :: [R 7→ S]t, Θ1

[AUX1]

(w = v.f) ⇒ (v /∈ Θ ∧ v.f /∈ Θ)
(w = v) ⇒ (v /∈ Θ ∧ ∀f · v.f /∈ Θ)

Θ ⊢ consumeU(w, A), Θ ∪ ({w} � A = U � ∅)

[AUX2]

AS = ann(tS) AT = ann(tT) ⊢ tS <: tT

v /∈ (Θ ∪ Λ) ∧ ∀f · v.f /∈ Θ
d = ({v} � AS = U ∧ AT 6= L � ∅)

g = ({v} � AT = L ∧ AS ∈ {L, U} � ∅)

Θ; Λ ⊢ conUL(v, tS , tT), Θ ∪ d; Λ ∪ g

[A:NEW]

Λ0 = ∅ fdlist(c) = [t̂i fi]
p
i=1 Γ(vi)=ti i∈1..p

Θi−1; Λi−1 ⊢ conUL(vi, ti, [R 7→ S]t̂i), Θi; Λi i∈1..p

Γ; Θ0 ⊢ new c(v1..p) :: c@U, Θp

[A:ASSIGN]

¬ isParam(w) Γ(w) = t ann(t) 6=R ⊢ t1 <: t
(w = v.f) ⇒ (v /∈ Θ) Γ; Θ ⊢ e :: t1, Θ1

Γ; Θ ⊢ w = e :: void@S, Θ1\w

[A:SUBT]

A1≤aA2 ⊢ τ1 <: τ2

⊢ τ1@A1 <: τ2@A2

[SUBT1]

⊢ τ <: τ

[SUBT2]

⊢ τ1 <: τ2 ⊢ τ2 <: τ3

⊢ τ1 <: τ3

[SUBT3]

class c1 extends c2 {(t f)1..m (A || meth)1..p }

⊢ c1 <: c2

[A:IF]

Γ(v) = bool@S Γ; Θ ⊢ ei :: ti, Θi i = 1, 2
t = msst(t1, t2) Θ3 = Θ1 ∪ Θ2

Γ; Θ ⊢ if v then e1 else e2 :: t, Θ3

[A:LOCAL]

Γ; Θ ⊢ e1 :: t1, Θ1 ⊢ t1 <: t
ann(t) 6∈ {L, R} Γ + {v :: t}; Θ1 ⊢ e2 :: t2, Θ2

Γ; Θ ⊢ (t v = e1 ; e2) :: t2, Θ2\v

[A:DISPOSE]

v 6∈ Θ ann(Γ(v)) = U

Γ; Θ ⊢ v.dispose() :: void@S, Θ∪{v}

[A:ELF]

v∗ ⊆ dom(Γ) Γ; Θ ⊢ e :: t, Θ1

Γ; Θ ⊢ ret(v∗, ρ, e) :: t, Θ1\{v∗}

[A:RELA]

Γ; Θ ⊢ e :: t, Θ1

Γ; Θ ⊢ relA(b, k, e) :: t, Θ1

[A:RELB]

Γ; Θ ⊢ e :: t, Θ1

Γ; Θ ⊢ relB(b, k, e) :: t, Θ1

[A:SMI]

t̂ mn((t̂i v̂i)i:1..p) [{e}] ∈ P
Λ0 = ∅ Γ(vi) = ti i∈1..p

Θi−1; Λi−1 ⊢ conUL(vi, ti, t̂i), Θi; Λi i∈1..p

Γ; Θ0 ⊢ mn(v1..p) :: t̂, Θp

[A:IMI]

Â || t̂ mn((t̂i v̂i)i:1..p) {e} ∈ c

Λ0 = ∅ Γ(vi) = ti i∈0..p t0 = c@A t̂0 = c@Â
Θi−1; Λi−1 ⊢ conUL(vi, ti, t̂i), Θi; Λi i∈0..p

Γ; Θ0 ⊢ v0.mn(v1..p) :: t̂, Θp

[A:PROG]

⊢def defi, i ∈ 1..p
∅ ⊢meth methi, i ∈ 1..q

⊢P defi:1..p methi:1..q

[A:PMETH]

ann(t0) 6= L

Γ ⊢meth t0 mn((ti vi)i:1..p)

[A:METH]

Γ1 = Γ + {vi :: ti}
p
i=1 Γ1; ∅ ⊢ e :: t, Θ ⊢ t <: t0

ann(t0) 6= L ∀i ∈ 1..p · (ann(ti) = L) ⇒ (∀f · vi.f 6∈ Θ)

Γ ⊢meth t0 mn((ti vi)i:1..p) {e}

[A:CLASS]

def= class c1 extends c2 {(t f)i:1..m (Ai || methi)i:1..p }
ann(ti) 6= L, i ∈ 1..m

∀i ∈ 1..p · {this : c@Ai} ⊢meth methi ∧
(∀(A || meth) ∈ c2 · name(meth) = name(methi)
⇒ ⊢ OverridesOK(methi, meth) ∧ A = Ai)

⊢def def

[A:OVERRIDE]

meth1 = t mn((ti vi)
n
i=1) · · ·

meth2 = t mn((ti vi)
n
i=1) · · ·

⊢ OverridesOK(meth1, meth2)

[A:SUBS1] : (Covariant)
Γ; Θ ⊢ e :: t, Θ1 Θ1 ⊆ Θ2

Γ; Θ ⊢ e :: t, Θ2

[A:SUBS2] : (Contravariant)
Γ; Θ1 ⊢ e :: t, Θ Θ2 ⊆ Θ1

Γ; Θ2 ⊢ e :: t, Θ

(v : t)∈Γ

Γ(v) =df t

(v : c@A)∈Γ (t f)∈fdlist(c) ρ = ([U 7→S] � A = S � [])

Γ(v.f) =df ρ t

Θ\v =df Θ − {v, v.f∗} Θ\v.f =df Θ − {v.f} Θ\({w} ∪ S) =df (Θ\w)\S A≤a A U≤a L U≤a S

isParam(w)=df true � w is a parameter variable� false name(t mn(...)...) =df mn ann(τ〈n∗〉@A) =df A

fdlist(Object)=df []

ℓ = fdlist(c2)

(class c1 extends c2 · · · {(ti fi)
p
i=1 . . .) ∈ P

fdlist(c1)=df ℓ+[(ti fi)]
p
i=1

τ1 <: τ τ2 <: τ ∀τ3 · (τ1, τ2 <: τ3⇒τ <: τ3)

A1≤aA A2≤aA ∀A3 · (A1, A2≤aA3⇒A≤aA3)

msst(τ1@A1, τ2@A2) =df τ@A

Figure 10. Type Rules for Alias Checking

[CONS1]

n∗ = fresh()

Γ; ∆;Υ ⊢ (c)null :: c〈n∗〉@U, ∆ ∧ (n = 0)∗, Υ

[CONS2]

n = fresh()

Γ; ∆; Υ ⊢ kint :: int〈n〉@S, ∆ ∧ (n = k), Υ

[CONS3]

k=() | kfloat τ=(void � k=() � float)

Γ; ∆;Υ ⊢ k :: τ〈〉@S, ∆, Υ

[CONS4]

b = fresh() φ=(b=1 � kbool=true � b=0)

Γ; ∆;Υ ⊢ kbool :: bool〈b〉@S, ∆ ∧ φ, Υ

[VAR−FD]

Γ ⊢ w :: t, φ, Y

Γ; ∆;Υ ⊢ w :: [R 7→ S]t, ∆ ∧ φ, Υ

[AUX1a]

Γ(v) = t t1 = fresh(t)
φ = equate(t1, prime(t))

Γ ⊢ v :: t1, φ, V(t)

[AUX1b]

⊢ (t f) ∈ c〈n∗〉, ϕ m∗ = V(t)
Γ(v) = c〈n∗〉@A ρ1 = ([U 7→ S] � A = S � [])

a∗ = V(ϕ) − (m∗ ∪ n∗) ρ = [(n 7→ n′)∗]∪rename(t, t1)
t1 = fresh(t) Y = ρ(depends(n∗, m∗, ϕ)) φ = ρ(∃a∗ · ϕ)

Γ ⊢ v.f :: (ρ1 t1), φ∧inv(t1), Vu(Y)

[AUX2a]

(ℓ, φ) = fdList(c〈u1..p〉)
(t f) ∈ ℓ

⊢ (t f) ∈ c〈u1..p〉, φ

[AUX2b]

class c〈n1..p〉 extends .. { ..meth..} ∈ P
meth1 = fresh(meth) ρ = [ni 7→ui]

p
i=1

⊢ ρ(meth1) ∈ c〈u1..p〉

[AUX2c]

class c1〈n1..p〉 extends c2〈n1..q〉 · · · {(t f)∗ (Ai || methi)
p
i=1}∈P

⊢ meth∈ c2〈u1..q〉 ∀i ∈ 1..p · name(meth) 6= name(methi)

⊢ meth∈ c1〈u1..p〉

[AUX2d]

P = · · · meth· · ·
meth1 = fresh(meth)

⊢ meth1 ∈ P

[SMI]

⊢ (t̂ mn((t̂i v̂i)i:1..p) where φpr; φpo; ǫc; ǫr {e}) ∈ P
t = fresh(t̂) Γ(vi) = ti i∈1..p

⊢ ti <: t̂i, ρi i∈1..p ρp =
Sp

i=1 ρi ∆1 ⊢ Υ⊒ǫc

ρ = rename(t̂, t)∪ρp∪prime(ρp) ∆≈>V(Γ) ∃V(ǫc)∪V(ǫr)·ρ φpr

∆1 = ∆ ◦L ∃Y · ρ(φpr∧φpo) Υ1 = Υ−(ǫc\{S})⊎ǫr

X =
Sp

i=1 V(t̂i) Y = X ∪ prime(X) L =
Sp

i=1 V(ti)

Γ; ∆; Υ ⊢ mn(v1..p) :: t, ∆1, Υ1

[LOCAL]

Γ; ∆; Υ ⊢ e1 :: t1, ∆1, Υ1 t = fresh(t̂)
⊢ t1 <: prime(t), ρ X = V(t1)

Y = V(t) ∪ prime(V(t)) ∆1 ⊢ Υ1 ⊒ {(S, 1)}
Γ, v :: t̂;∃X · ρ−1∆1; Υ1−{(S, 1)} ⊢ e2 :: t2, ∆2, Υ2

Γ; ∆;Υ ⊢ (t̂ v = e1 ; e2) :: t2, ∃Y · ∆2, Υ2

[CLASS]

Si = V(ti) i ∈ 1..m distinct{S1, . . . , Sm, {n1..np}} V(φI) ⊆ {ni}
p

i=q+1

p ≥ q φ =
Vp

i=q+1 (ni=αi) ∀i ∈ {q+1..p} · V(αi) ⊆
Sm

i=1 Si

Γi = {this :: c1〈n1..p〉@Ai} Γi ⊢meth methi i∈1..r inv([ti]
m
i=1)∧φ⇒φI

⊢class class c1〈n1..p〉 extends c2〈n1..q〉 whereφ ; φI{(ti fi)
m
i=1, (Ai || methi)

r
i=1}

[PROG]

P = defmi=1 methni=1 NoCircClasses(P) FieldsOnce(P)
InstanceMethOnce(P) ⊢ InheritanceOK(defi) i∈1..m

⊢class defi i∈1..m {} ⊢meth methi i∈1..n

⊢ P

[INHC]

def1 = class c1〈n1..p〉 extends c2〈n1..q〉 where · · · {fd∗ meth1..p}
(∃meth· ⊢ meth∈ c2〈n1..q〉 ∧ name(meth) = name(methi))

⇒ ⊢ OverridesOK(methi, meth) i∈1..p

⊢ InheritanceOK(def1)

[OVERRIDE]

meth1 = t mn((ti vi)i:1..p) where φpr1; φpo1; ǫ1m; ǫ1n {· · · }
meth2 = t mn((ti vi)i:1..p) where φpr2; φpo2; ǫ2m; ǫ2n {· · · }

φpr1⇒φpr2 φpo2⇒φpo1 φpr1 ⊢ ǫ1m⊒ǫ2m φpr1 ⊢ ǫ2n⊒ǫ1n

⊢ OverridesOK(meth1, meth2)

[SUBT1]

Vclass(τ〈s1, . . . , sm〉) = (SI , ST ,) ρI = [ni 7→si]si∈SI
ρT = [ni 7→si]si∈ST

A1≤aA2 ρ=(ρI � A1=S∨A2=S � ρI⊎ρT)

⊢ τ〈s1, .., sm〉@A1 <: τ〈n1, .., nm〉@A2, ρ

[SUBT2]

class c1〈n1..p〉 extends c2〈n1..q〉 · · · ∈P
⊢ c2〈n1..q〉@A1 <: c3〈m1..r〉@A2, ρ

⊢ c1〈n1..p〉@A1 <: c3〈m1..r〉@A2, ρ

[DEF−NAME]

meth= t̂ mn(..) · · ·

name(meth) =df mn

[DEF−INV1]

inv(bool〈b〉)=df0≤b≤1

[DEF−INV2]

τ = int | float | void | Object

inv(τ〈m∗〉)=dftrue

[DEF−INV3]

class c1〈n1..q〉 extends c2〈n1..r〉 whereφ2 ; φI{(ti fi)
p
i=1 . . . } ∈ P

φ1=inv(c2〈n̂1..r〉) ρ = [ni 7→n̂i]
q
i=1

inv(c1〈n̂1..q〉)=df φ1∧(ρ φI))

[DEF−fdList1]

fdList(Object〈〉)=df ([], true)

[DEF−fdList2]

(ℓ1, φ1)=fdList(c2〈n̂1..r〉)
class c1〈n1..q〉 extends c2〈n1..r〉 whereφ2 ; φI{(ti fi)

p
i=1 . . . } ∈ P

t̂i = fresh(ti), i∈1..p ρ = [ni 7→n̂i]
q
i=1∪

Sp
i=1 rename(ti, t̂i)

fdList(c1〈n̂1..q〉)=df (ℓ1+[(t̂i fi)]
p
i=1, φ1∧(ρ φ2))

[DEF−Vfield]

Vclass(τ〈s
∗〉) = (dI , dT , dN)

Vfield(τ〈s∗〉@R) =df (dI , ∅, dT ∪ dN)

[DEF−Vfield]

Vclass(τ〈s
∗〉) = (dI , dT , dN)

Vfield(τ〈s∗〉@S) =df (∅, dI , dT ∪ dN)

[DEF−Vfield]

A ∈ {U, L} Vclass(τ〈s
∗〉) = (dI , dT , dN)

Vfield(τ〈s∗〉@A) =df (∅, dI ∪ dT , dN)

[DEF−Vclass]

τ ∈ prim

Vclass(τ〈n∗〉) =df (n∗, ∅, ∅)

[DEF−Vclass]

Vfield(ti)=(dI
i , dT

i , dN
i), i ∈ {1..p}

([ti fi]
p
i=1, φ) = fdList(c1〈n1..q〉) nI=depends(n1..q ,

Sp
i=1 dI

i , φ)

nT =depends(n1..q,
Sp

i=1 dT
i , φ) nN=depends(n1..q,

Sp
i=1 dN

i , φ)

Vclass(c1〈n1..q〉) =df (nI−(nT ∪nN), nT −nN , nN)

[DEF−fresh−meth]

meth= t̂ mn(..) where φpr; φpo; ǫc; ǫr{e}
{s1, .., sp} = V(ǫc)∪V(ǫr) u1..p=fresh() ρ=[si 7→ui]

p
i=1

ǫ̂c=ρ ǫc ǫ̂r=ρ ǫr φ̂pr=ρ φpr φ̂po=ρ φpo

fresh(meth) =df t̂ mn(..) where φ̂pr; φ̂po; ǫ̂c; ǫ̂r{e}

depends(n∗, s∗, φ) =df

[
{n|(n = α) ∈ φ, (V(α) ∩ s∗) 6= ∅}

Figure 11. Other Type Rules for Memory Checking

[BIND]

Γ(v) = c〈n∗〉@A s∗ = fresh() fdList(c〈s∗〉) = ([(ti fi)]
p
i=1, φ)

ρ = [s 7→n′]∗∪
Sp

i=1 rename(ti, prime(ti)) ∆1 = ∆∧(ρ φ)∧inv(Γ1)
Γ1 = {vi :: ti}

p
i=1 Γ−{v}∪Γ1; ∆1; Υ ⊢ e :: t, ∆2, Υ1

∆3 = ∆2 ◦{n∗} ρ φ Y =
Sp

i=1 V(ti) Z = Y ∪ prime(Y)

Γ;∆;Υ ⊢ (bind (v1..p) = v in e) :: t, ∃Z · ∆3,Υ1

[A:BIND]

Γ(v) = c@A A 6= S fdlist(c) = [(ti fi)]
p
i=1

Γ1 = Γ−{v}∪{vi :: ti}
p
i=1 v /∈ Θ ∧ ∀f · v.f /∈ Θ

Γ1; Θ ⊢ e :: t, Θ1 ∀i ∈ 1..p · vi /∈ Θ1 ∧ ∀f · vi.f /∈ Θ1

Γ;Θ ⊢ (bind (v1..p) = v in e) :: t, Θ1

[CAST]

Γ;∆;Υ ⊢ e :: t1,∆1, Υ1

t2 = fresh(t) Z = V(t1) φ = equate(t2, t1)

Γ; ∆;Υ ⊢ (t) e :: t2, ∃Z · ∆1∧φ,Υ1

[WHILE]

m = fresh() Γ;∆;Υ ⊢ m(v1..p) :: t, ∆1,Υ1 t = void〈〉@S
⊢while m((ti vi)i:1..p) where φpr;φpo; ǫc; ǫr {e1, e2}

Γ;∆; Υ ⊢ while e1 do e2 [(ti vi)
p
i=1, φpr;φpo; ǫc; ǫr] :: t, ∆1,Υ1

[WHILE−METH]

Γ = {v1 :: t̂1, .., vp :: t̂p} ∆ = noX (Γ)∧φpr∧inv(Γ)
Γ;∆; ǫc ⊢ if e1 then e2; m(v1..p) else () :: void〈〉@S, ∆1,Υ1

∆ ⊢ǫr⊒∅ φpr∧∆1 ⊢ Υ1 ⊒ ǫr ∆ ⊢ǫc⊒∅
∆1 ⇒ ρ (φpo) Υ1(S) = ǫc(S) ǫr(S) = 0

⊢while m((t̂i vi)i:1..p) where φpr;φpo; ǫc; ǫr {e1, e2}

[WHILE−CALL]

⊢while m((t̂i v̂i)i:1..p) where φpr;φpo; ǫc; ǫr {e1, e2}
Γ(vi) = ti, i∈1..p ρ̂ =

Sp
i=1 rename(t̂i, ti)

ρ = ρ̂∪prime(ρ̂) ∆1 ⊢ Υ⊒ǫc ∆≈>L ∃V(ǫc)∪V(ǫr)·ρ φpr
L =

Sp
i=1 V(ti) ∆1 = ∆ ◦L ρ(φpr∧φpo) Υ1 = Υ−(ǫc/{S})⊎ǫr

Γ; ∆;Υ ⊢ m(v1..p) :: void〈〉@S, ∆1, Υ1

[A:CAST]

Γ; Θ ⊢ e :: t1,Θ1

Γ;Θ ⊢ (t) e :: t, Θ1

[A:WHILE]

Γ;Θ ⊢ e1 :: bool@S, Θ Γ;Θ ⊢ e2 :: void@S,Θ

Γ; Θ ⊢ while e1 do e2 :: void@S,Θ

Figure 12. Type Rules for Other Language Features

and∆ ⊢ ǫ ⊒ ∅, then

Γ;Σ; ∆;Υ⊎ǫ ⊢ e :: t, ∆1,Υ1⊎ǫ

Proof: By structural induction one. 2

14.1 Proof of Theorem 1

By induction over the depth of the type derivation of alias checking
for expressioneraseS(e).

Case [A:VAR−FD]. Let Γα = Γ, Σα = Σ, andΘα = Θ1. Then the
type preservation is straightforward. For alias consistency, we
specifically need to show the consistency of aliases for those
references not inΘα. These are consistency because (1)w, if
not included inΘα, does not change its alias annotation during
the reduction step (as shown in the functionread in dynamic se-
mantics); (2) for other variables, their alias annotation remains
intact during this reduction; (3) the no-dangling propertyfor
Π1,̟1 is preserved as no live locations are deleted from the
store, while the result value (e1) is live.

Case [A:ASSIGN]. We deal with expressionw = e. There are two
rules by which one step evaluation can be conducted:

Subcase [D-Assign-1] By induction hypothesis, there exist
Γα,Σα, andΘα that preserve the type ofe1 andΓα; Σα; Θα|=A〈Π1, ̟1〉.
By applying the rule[A:ASSIGN], we obtain the type preserva-
tion for w = e1.

Subcase [D-Assign-2] Here,e is some valueν = (As, δs). From
dynamic semantics, we obtain〈Π1, ̟1〉 = upd(Π, ̟, w, ν). Let
Γα = Γ, Σα = Σ, andΘα = Θ/w. The type preservation is ob-
vious. To show the alias consistency for those references not
in Θ/w, we just need to check the alias annotation associated
with w, which may have just been removed fromΘ. If w 6∈ Θ,
then the conformance is guaranteed from the premise. Ifw ∈ Θ,
then there are two cases: (1) if (the value associated with)w has
an annotationUD before reduction, then it has annotationU af-
ter reduction, which is less than any static-annotation ofw at
compile-time; (2) ifw has an annotation other thanUD before

reduction, then its annotation remains the same after reduction.
Thus, the alias consistency ofw is guaranteed from the premise.
The no-dangling property is preserved as no live locations in Π1

or ̟1 are removed from the store. While the target expression
is a primitive.

Case [A:NEW]. We deal with expressionnew c(v1..p). We choose
Γα = Γ, Σα = Σ ∪ {ι 7→c@U}, andΘα = Θp. The proof follows.

Case [A:IMI]. Given thatΓ;Σ; Θ0 ⊢ v0.mn(v1..p) :: t̂,Θp, and
〈Π, ̟, σ〉 [v0.mn(v1..p)]→֒ 〈Π1, ̟, σ1〉 [ret(v̂0..p, ρ, e)]. We need
to show there existΓα, Σα, Θα such thatΓα; Σα; Θα|=A〈Π1, ̟〉,
andΓα; Σα; Θα ⊢ ret(v̂0..p, ρ, e) :: t̂,Θp. Let Σα=Σ, Θα=Θp,
and Γα = (Γ, v̂q

0 :: t̂0, . . . , v̂q
p :: t̂p)), whereq is the new stack

frame number. The alias consistency is ensured by the definition
of updVEand the respective premise. Since no variables/fields
in Θ0 will be used by the method bodye, checking the method
body only involves formal parameters(vq)∗. Thus, we obtain
Γα; Σα; Θα ⊢ e :: t,Θα∪ΘM , whereΘM is derived from the
rule [A:METH], andΘM ⊆ {vq

0..p}. From the rule[A:ELF], we
obtainΓα; Σα; Θα ⊢ ret(v̂0..p, ρ, e) :: t̂,Θα.

Case [A:SMI]. We deal with expressionmn(v1, .., vp). There are
two subcases:[D-MI] and[D-MI-prim]. The proof is similar to the
case [A:IMI].

Case [A:LOCAL]. We deal with expressiont v = e1; e2. There are
two rules by which one step evaluation can be conducted:

Subcase [D-Blk-1] By induction hypothesis and the assumption
weakening lemma.

Subcase [D-Blk-2] By induction hypothesis and the rule[A:ELF].

Case [A:IF]. Both the subcases[D-If-true] and [D-If-false] can be
easily proven by the induction hypothesis and the covariance
subsumption rule[A:SUBS1].

Case [A:DISPOSE]. We deal with expressionv.dispose(). Let
Γα = Γ, Σα = Σ, andΘα = Θ∪{v}. The type preservation is
trivial. After the reduction step ([D-Dispose]), ̟1 = ̟−δ, while
Π1 = Π[(UD , δ)/v]. Although δ is deleted from the store,v is
moved toΘα correspondingly, while other references keep un-

changed. Thus the no-dangling property and other alias consis-
tency properties are obviously preserved.

Case [A:RELA]. The only possible reduction step is [D-RelA]. The
proof follows by induction hypothesis.

Case [A:ELF].We deal with expressionret(v∗, ρ, e). There are five
rules by which one step evaluation can be conducted:

Subcase [D-ret-1] By induction hypothesis.

Subcase [D-ret-2] Let Γα = Γ, Σα = Σ, andΘα = Θ. The proof
follows immediately.

Subcase [D-ret-3] By rule [A:RELA] and [A:ELF].

Subcase [D-TIM] The proof is similar to that for the case
[A:IMI].

Subcase [D-TSM] The proof is similar to that for the case
[A:SMI].

2

14.2 Proof of Theorem 2

(a) By induction over the depth of the type derivation of sizeand
memory analysis for expressione. In each of the following cases,
the Γα, Σα, andΘα are taken the same as the respective cases in
the proof of Theorem 1, and the alias consistency is already proved
there. We shall focus only on the construction of∆α andΥα to
ensure the size consistency the type preservation.

Case [VAR−FD]. Given that Γ; ∆;Υ ⊢ w :: [R 7→ S]t,∆ ∧ φ,Υ,
and〈Π, ̟, σ〉 [w] →֒ 〈Π1, ̟1, σ〉 [ν]. Let ∆α = ∆∧φ, Υα = Υ.
Then the type judgementΓα; Σα;∆α; Υα ⊢ ν :: [R 7→ S]t, ∆α,Υα

follows from the covariant subsumption for sizes [SUBS1]. For
size and memory consistency, as there is no change in run-time
environment during reduction, we have∆Π1

= ∆Π . Further-
more, ∆Π1

⇒∃X·∆ where X = (V(∆) − prime(V(Γ))) ∪ DΘ.
Let X̂ = (V(∆α)− prime(V(Γ))) ∪ DΘα . Whenw is a variablev,
we have∃X · ∆ = ∃X̂ · ∆α whenw 6∈ Θα, and∃X · ∆ ⇒ ∃X̂ · ∆α

otherwise. So,∆Π1
⇒ ∃X̂ · ∆α. Whenw is a field-readv.f , we

have∃X · ∆ = ∃X̂ · ∆α, and thus the proof.

Case [ASSIGN]. We deal with expressionw = e. From the sta-
tic semantics, we haveΓ;∆;Υ ⊢ e :: t1,∆1, Υ1. There are two
rules by which one step evaluation can be conducted:

Subcase [D-Assign-1] By induction hypothesis, there existΓα,Σα,
Θα, ∆α, andΥα, such thatΓα; Σα; ∆α; Θα; Υα |= 〈Π1, ̟1, σ1〉 .
The relationship betweenΓα andΓ for them to be consistent
ensures thatΓα ⊢ w :: t, φ, Y , as shown in the premise of the
rule [ASSIGN]. By applying rule[ASSIGN] on Γα, Σα,∆α and
Υα, we haveΓα; Σα; ∆α; Υα ⊢ w = e1 :: void〈〉@S,∆2,Υ1.

Subcase [D-Assign-2] Here,e is some valueν = (As, δs). From
dynamic semantics, we obtain〈Π1, ̟1〉 = upd(Π, ̟, w, ν). Let
Υα = Υ and∆α = ∆2 = ∃Z·∆1 ◦Y ρ(φ), as given in the static
rule, withZ = V (t1) ∪ V (t). Type preservation and consistency
relation is obvious.

Case [NEW]. Given Γ;∆;Υ ⊢ new c(v1..p) :: c〈r∗〉@U, ∆1,Υ1. We
choose∆α = ∆1, Υα = Υ1, and the proof follows.

Case [IMI]. Given thatΓ;Σ; ∆;Υ ⊢ v0.mn(v1..p) :: t, ∆2, Υ2, where
∆2 = ∆ ◦L ∃Y ·ρ(φpr∧φpo). The one-step reduction is
〈Π, ̟, σ〉 [v0.mn(v1..p)]→֒ 〈Π1, ̟, σ1〉 [ret(v̂0..p, ρ, e)]. We need
to show size consistency and type preservation. Let∆α=∆◦L∆e

where∆e=noX (∪p
i=0{Vu(t̂i)}), t̂0 = c〈n∗〉@A, and the method

(A || t̂ mn((t̂i v̂i)i:1..p) where φpr;φpo; ǫc; ǫr{e}) ∈ c〈n∗〉. Let
Υα=Υ−{(S, p+3)}. The size consistency is ensured by the
definition of updVEand the respective premise. Since no vari-
ables/fields inΘ will be used by the method bodye, check-
ing the method body only involves size variables of formal
parameters(v̂q)∗. Thus, Γα; Σα; ∆α; ǫ ⊢ e :: t, ∆ ◦L ∆M ,Υ1,
where∆M andΥ1 are derived from rule[METH]. Note that

φpr∧∆1 ⊢ Υ1 ⊒ ǫr⊎{(S,Υ1(S))} from [METH]. Thus we have
φpr∧∆1 ⊢ Υ1⊎(Υα−ǫ)

=Υ1⊎Υ−ǫc

⊒ ǫr⊎{(S,Υ1(S))}⊎Υ−ǫc

=ǫr⊎{(S, ǫc(S))}⊎Υ−ǫc

=Υ−(ǫc/{S})⊎ǫr

=Υ2

By Lemma 2 and rule[SUBS1], we have
Γα; Σα;∆α; Υα ⊢ e :: t, ∆ ◦L ∆M ,Υ2. By the rule [ELF], we
haveΓα; Σα; ∆α; Υα ⊢ ret(v̂1..p , ρm, e) :: t,∆3,Υ2, where∆3 =
∃Ym·ρ(∆ ◦L ∆M). While∃Ym · ρ(∆◦L∆M) = ∆◦L∃Ym·ρ(∆M)
⇒ ∆◦L∃Ym·ρ(φpr∧φpo) = ∆2.

Case [SMI]. We deal with expressionmn(v1, .., vp). There are two
subcases:[D-MI] and[D-MI-prim]. The proof is similar to the case
[IMI].

Case [LOCAL]. We deal with expressiont v = e1; e2. There are
two rules by which one step evaluation can be conducted:

Subcase [D-Blk-1] By induction hypothesis and the assumption
weakening lemma.

Subcase [D-Blk-2] By induction hypothesis and the rule[ELF].

Case [IF].Both the subcases[D-If-true] and [D-If-false] can be eas-
ily proven by the induction hypothesis and the covariance sub-
sumption rule[SUBS1].

Case [DISPOSE]. We deal with expressionv.dispose(). Let∆α = ∆,
Υα = Υ⊎{(c, 1)}. The type preservation and the size & mem-
ory consistency are straightforward, from the respective premises.

Case [RELA]. The only possible reduction step is [D-RelA]. The
proof follows by induction hypothesis.

Case [ELF].We deal with expressionret(v∗ , ρ, e). There are five
rules by which one step evaluation can be conducted:

Subcase [D-ret-1] By induction hypothesis.

Subcase [D-ret-2] Let ∆α = ∆, Υα = Υ. The proof follows im-
mediately.

Subcase [D-ret-3] By rule [RELA] and [ELF].

Subcase [D-TIM] The proof is similar to that for the case [IMI],
except thatΥα = Υ⊎{(S, b+k−(p+3))}.

Subcase [D-TSM] The proof is similar to that for the case [SMI],
except thatΥα = Υ⊎{(S, b+k−(p+2))}.

(b) This can be proved by establishing that each well-typed
constant from[CONS1] to [CONS4] does not changeΘ. In addition,
the resulted post-condition∆ obtained is consistent with the run-
time stack and store. 2

14.3 Proof of Theorem 3

By induction over the depth of type derivation for expression e.

Case [CONS1−4]. Trivial.

Case [VAR−FD]. We deal with the expressionw. As w = v | v.f
is well-typed, from type rule[VAR−FD], neitherv nor w is in
UD or L mode. Thus from the evaluation rule[D-Var-FD] (the
function read), the evaluation either reports anError-Null , or
advances one step yielding a value.

Case [ASSIGN]. We deal with expressionw = e, wherew = v | v.f .
From the type rule, we knowΓ;∆;Υ ⊢ e :: t1,∆1,Υ1. By in-
duction hypothesis, either (i)e is a valueν, or (ii) 〈Π, ̟, σ〉 [e]
→֒ Error-Null , or (iii) 〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1].
In case (i), from the well-typedness checking, neitherw norv is
in L or R mode, and the RHS and LHS subsumes the alias sub-
typing, from the evaluation rule[D-Assign-2] (the functionupd),
either the evaluation reports anError-Null , or the one-step eval-
uation succeeds, yielding a value(S, ()).

In case (ii), the evaluation for the assignment reports an
Error-Null .
In case (iii), from evaluation rule[D-Assign-1], the evaluation
advances with one-step.

Case [NEW]. We deal with expressionnew c(v1..p). From the type
rule [NEW], no argumentsvi are in the consumed set, and the
type of each argument and that of its corresponding field con-
form to the (alias) subtyping relation. From the memory consis-
tency and type rule[NEW], σ⊒Υ⊒{(c, 1)}, which guarantees
the memory adequacy. Thus from the evaluation rule[D-New],
the evaluation succeeds, yielding a newly created object inthe
store.

Case [DISPOSE]. We deal with expressionv.dispose(). LetΠ(v)=

(A, δ). If δ = null, the evaluation reports anError-Null . Oth-
erwise, as the well-typedness ensures(A=U), the evaluation
[D-Dispose] succeeds.

Case [REL−A]. We deal with expressionrelA(b, k, e). Note that
e cannot be a value, otherwise, the whole expression should
be inside aret(..). If the evaluation ofe can make one-step
reduction, then so isrelA(b, k, e) by dynamic rule[D-RelA]. If
the evaluation ofe reports anError-Null , so isrelA(b, k, e).

Case [IMI]. We deal with expressionv0.mn(v1..p). As guaranteed
by type rule[IMI], no unique arguments are consumed before
the method call, and the type of each argument and that of
its corresponding field conform to the (alias) subtyping rela-
tion. From memory consistency, type rules[IMI] and[METH],
σ⊒Υ⊒ǫc⊒σ0, the memory is adequate from the evaluation rule
[D-IMI], thus the evaluation succeeds, yielding the intermediate
ret-expression.

Case [SMI]. the proof for two subcases[D-SMI] and[D-SMI-prim] are
similar to the above.

Case [LOCAL]. We deal with expressiont v = e1; e2. From the
type rule, we haveΓ;∆; Υ ⊢ e1 :: t1,∆1, Υ1. By induction hy-
pothesis, either (i)e1 is a valueν, or (ii) 〈Π, ̟, σ〉 [e1] →֒
Error-Null , or (iii) 〈Π, ̟, σ〉 [e1] →֒ 〈Π1, ̟1, σ1〉 [ê1].
In case (i), the type rule[LOCAL] guarantees the alias sub-
typing relation needed in the evaluation[D-Blk-2] (the function
ext). From the memory consistency and type rule[LOCAL],
σ⊒Υ⊒{(S, 1)}, which ensures the memory adequacy. Thus
the evaluation succeeds. In case (ii), the evaluation reports
Error-Null immediately. In case (iii), the proof follows from
[D-Blk-1].

Case [IF]. We deal with expressionif v then e1 elsee2. The type
rule ensuresv is of typebool, thus there always exists an eval-
uation step to be taken in spite of the value ofv, that is, either
[D-If-true] or [D-If-false].

Case [ELF]. We deal with expressionret(v∗, ρ, e). From the type
rule, we haveΓ;Σ; ∆;Υ ⊢ e :: t, ∆1,Υ1. By induction hypothe-
sis, either
(1) e is relA(b, k, ν), or
(2) e is relB(b, k, v0.mn(v1..p)), or
(3) e is relB(b, k, mn(v1..p)), or
(4) e is ret(u∗, [], ê), or
(5) 〈Π, ̟, σ〉 [e] →֒ Error-Null , or
(6) 〈Π, ̟, σ〉 [e] →֒ 〈Π1, ̟1, σ1〉 [e1].
In subcase (1), the proof follows from[D-Ret-3]. In subcase (2),
the proof follows from[D-TIM]. In subcase (3), the proof follows
from [D-TSM]. Note that for subcase (2) and (3), the memory ad-
equacy is analyzed similar to the case[IMI]. In subcase (4), the
proof follows from [D-Ret-2]. In subcase (5), the evaluation re-
portsError-Null immediately. In subcase (6), the proof follows
from [D-Ret-1]. 2

