
Innovations Syst Softw Eng
DOI 10.1007/s11334-009-0100-9

ORIGINAL PAPER

PTSC: probability, time and shared-variable concurrency

Huibiao Zhu · Shengchao Qin · Jifeng He ·
Jonathan P. Bowen

Received: 21 October 2008 / Accepted: 14 July 2009
© Springer-Verlag London Limited 2009

Abstract Complex software systems typically involve
features like time, concurrency and probability, where prob-
abilistic computations play an increasing role. It is challeng-
ing to formalize languages comprising all these features. In
this paper, we integrate probability, time and concurrency in
one single model, where the concurrency feature is modelled
using shared-variable-based communication. The probabil-
ity feature is represented by a probabilistic nondeterministic
choice, probabilistic guarded choice and a probabilistic ver-
sion of parallel composition. We formalize an operational
semantics for such an integration. Based on this model we
define a bisimulation relation, from which an observational
equivalence between probabilistic programs is investigated
and a collection of algebraic laws are explored. We also
implement a prototype of the operational semantics to ani-
mate the execution of probabilistic programs.

A preliminary version of this paper appeared in SEW-30:
30th IEEE/NASA Software Engineering Workshop [29].

H. Zhu (B) · J. He
Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, 3663 Zhongshan Road (North),
Shanghai 200062, China
e-mail: hbzhu@sei.ecnu.edu.cn

J. He
e-mail: jifeng@sei.ecnu.edu.cn

S. Qin
Department of Computer Science, University of Durham,
South Road, Durham DH1 3LE, UK
e-mail: shengchao.qin@durham.ac.uk

J. P. Bowen
Museophile Limited, Oak Barn, Sonning Eye,
Reading RG4 6TN, UK
e-mail: jpbowen@gmail.com
URL: http://www.jpbowen.com

Keywords Probability · Time · Shared-variable
concurrency · Operational semantics · Algebraic laws ·
Bisimulation

1 Introduction

As probabilistic computations play an increasing role in
solving various problems [25], various proposals on prob-
abilistic languages have been reported [5,6,8,17,16,18,22–
24]. Complex software systems typically involve important
features like real-time, probability and shared-variable
concurrency. Therefore, system designers would expect a
formal model that incorporates all these features to be avail-
able for them to use. However, to the best of our knowl-
edge, no one has integrated all these features in one model.
In this paper, we tackle this challenging problem by pro-
posing a formal model for a language equipped with prob-
ability, time and shared-variable concurrency. Our model
is meant to facilitate the specification of complex software
systems.

The shared-variable mechanism is typically used for
communications among components running in parallel.
Although shared-variable concurrency can be seen in many
languages (e.g. the Java programming language, the Verilog
hardware description language), it proves to be challenging
to formalize it [10,27,28], not to mention other orthogonal
features like probability and time. In this paper, we success-
fully tackle this challenge by integrating time, probability
and shared-variable concurrency in one model. The proba-
bility feature is reflected by the probabilistic nondeterminis-
tic choice, probabilistic guarded choice and the probabilistic
scheduling of actions from different concurrent components
in a program.

123

H. Zhu et al.

As advocated in Hoare and He’s unifying theories of
programming (UTP) [12], three different styles of mathemat-
ical representations are normally used: operational,
denotational, and algebraic ones, among which the opera-
tional style is the most intuitive one. In order to elaborate
more on the intuition behind the proposed language and to
formally define the behaviour of its programs, we start with
the operational semantics in this paper. Upon the operational
model, we define a bisimulation relation, from which a col-
lection of algebraic laws are derived.

Much related work has investigated the semantics for prob-
abilistic processes. Morgan and his colleagues explored the
abstraction and refinement for probabilistic processes using
the weakest precondition (wp) approach [16–18]. Hartog and
her colleagues have studied the equivalence between oper-
ational and denotational semantics for a variety of proba-
bilistic processes [5–8] using Banach Space approach [4].
Núñez extended Henessey’s “testing semantics” for a vari-
ety of probabilistic processes [22–24]. As an extension of the
guarded command language, a simple probabilistic guarded
command language was formalized in [11] under the UTP
framework. A set of algebraic laws were then explored based
on the denotational model.

The PTSC model proposed in this paper has recently been
used to specify a circuit in the register-transfer level [21]. The
circuit takes two integers as the input and sums up them as the
output, where the register containing one of the inputs may be
faulty. Our algebraic laws proposed for the PTSC language
have also been employed to verify that an implementation
of the circuit with probabilistic behaviour conforms to the
probabilistic specification.

The rest of this paper is organized as follows. Section 2
presents our language equipped with probability, time and
shared-variable concurrency. Section 3 is devoted to the oper-
ational semantics. A bisimulation relation is then defined in
Sect. 4 and used for the basis of a set of algebraic laws in
Sect. 5. Section 6 gives a prototype animation of the oper-
ational semantics, followed by some concluding remarks in
Sect. 7.

2 Probabilistic language PTSC

In this paper, we propose a probabilistic language PTSC
(probability, time and shared-variable concurrency), which
involves the integration of probability, time and shared-
variable concurrency. Apart from the concurrency feature
that exists in many conventional languages, probability and
time are the other two main features of our language. The
synchronization of different parallel components is based on
time controls. Overall, our language consists of the following
main features:

(1) Probabilistic behaviour: This can be represented by
probabilistic nondeterminism, probabilistic guarded
choice or probabilistic parallel composition.

(2) Timed behaviour: This can be reflected by event guard
@ b (wait until b is satisfied) and time-delay command.

(3) Shared-variable concurrency: The concurrency model
employs a shared-variable-based communication mech-
anism.

The PTSC language has the following syntactical elements:

P ::= Skip (does nothing)

| x := e (atomic assignment)
| if b then P else P (conditional)
| while b do P (while-loop)

| @b P (event guard)

| #n P (time delay)
| P ; P (sequential)
| P � P (non-deterministic choice)
| P �p P (probabilistic choice)
| P ‖p P (prob. parallel composition)

Note that:

(1) The assignment x := e is an atomic action. The empty
statement Skip behaves the same as x := x .

(2) Regarding @b P , when the Boolean condition b is sat-
isfied, process P can have the chance to be scheduled.
As we consider models for closed systems, the program
@b P can only let time advance when the Boolean con-
dition b is not met. For #n P , after n time units elapse,
process P can be scheduled.

(4) The mechanism for parallel composition P ‖p Q is a
shared-variable interleaving model with probability fea-
ture. If process P can perform an atomic action, P ‖p Q
has conditional probability p to do that atomic action.
On the other hand, if process Q can perform an atomic
action, P ‖p Q has conditional probability 1−p to per-
form that action.

(5) � stands for the nondeterministic choice, where�p stands
for the probabilistic nondeterministic choice.
P �p Q indicates that the probability for P �p Q to
behave as P is p, where the probability for P �p Q to
behave as Q is 1−p.

In order to facilitate algebraic reasoning, we enrich our
language with a guarded choice. As our parallel composition
has probability feature, the guarded choice also shares this
feature. A guarded choice construct can be of the following
five types:

(1) []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)}
(2) []i∈I {@bi Pi }
(3) []{#1 R}

123

PTSC: probability, time and shared-variable concurrency

(4) []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)}
[][]k∈K {@bk Qk}

(5) []i∈I {@bi Pi }[]{#1 R}

Note that for type (1) and (4), the guarded choice construct
[]i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)} should satisfy
the following healthiness conditions:

(a) ∀i • (
∨

j∈Ji
bi j = true) and

(∀ j1, j2 • (j1 �= j2) ⇒ ((bi j1 ∧ bi j2) = false))
(b) +i∈I pi = 1

The first type is composed of a set of assignment-guarded
components. The condition (a) indicates that for any i ∈ I ,
the Boolean conditions bi j from “choice j∈Ji (bi j &(xi j :=
ei j) Pi j)” are complete and disjoint. Therefore, there will be
exactly one component bi j &(xi j := ei j) Pi j selected among
all j ∈ Ji . Furthermore, for any i ∈ I , the possibility for a
component (xi j := ei j) Pi j (where bi j is met) to be scheduled
is pi and it should satisfy the second healthiness condition.

The second type is composed of a set of event-guarded
components. If one guard is satisfied, the subsequent behav-
iour for the whole process will be followed by its subsequent
behaviour of the satisfied component.

The third type is composed of one time delay component.
Initially, it cannot do anything but let time advance one unit.

The fourth type is the guarded choice composition of the
first and second type of guarded choice. If there exists one bk

(k ∈ K) being satisfied currently, then the event @ bk is fired
and the subsequent behaviour is Qk . If there is no satisfied
bk , the behaviour of the fourth type of guarded choice is the
same as that of the first type.

The fifth type is the compound of the second and third
type of guarded choice. Currently, if there exists i (i ∈ I)
such that bi is satisfied, then the subsequent behaviour of
the whole guarded choice is as Pi . On the other hand, if
there is no i (i ∈ I) such that bi is satisfied currently, then
the whole guarded choice cannot do anything initially but let
time advance one unit. The subsequent behaviour is the same
as the behaviour of R.

As the first type of guarded choice does not have time
advancing behaviour, there is no type of composite guarded
choice formed by the first and third type of guarded choice.

3 Operational semantics

The operational semantics of a language models the behav-
iour of a program in terms of execution steps, which are rep-
resented by transition relations. In our operational model, the
transitions are expressed in the form of Plotkin’s structural
operational semantics (SOS) [26]:

〈P, σ 〉 β−→ 〈P ′, σ ′〉
where 〈P, σ 〉 denotes a runtime configuration, with P stand-
ing for the program text that remains to be executed and σ

being the current state of the program. We use C to denote
the set of all runtime configurations.
There are four kinds of transitions that a program may
perform:

(1) The first kind of transitions models an atomic action
with certain probability (p). As mentioned earlier, an
assignment is treated as an atomic action.

〈P, σ 〉 c−→p 〈P ′, σ ′〉

It says, in state σ , the program P has the probability
p to perform the atomic action, leading to the state σ ′
with the program P ′ remaining.

(2) The second type models the transition of a time delay.
Time advances in discrete unit steps.

〈P, σ 〉 1−→ 〈P ′, σ ′〉

(3) The third type models the selection of the two compo-
nents for non-deterministic choice. It can be expressed
as:

〈P, σ 〉 τ−→ 〈P ′, σ 〉

Note that the label τ is used to depict a non-determinis-
tic choice action. The program state remains unchanged
for this kind of transitions.

(4) The fourth type models the triggered case of event @ b:

〈P, σ 〉 v−→ 〈P ′, σ 〉

Note that the label v is employed to represent such
event-triggered transitions. The program state remains
unchanged after the transition.

In what follows, we present the operational rules for sequen-
tial programs, probabilistic guarded choice, and concurrent
programs.

3.1 Sequential process

A sequential program comprising a single assignment per-
forms an atomic action with probability 1. It cannot perform
any other types of transitions.

〈x := e, σ 〉 c−→1 〈ε, σ [e/x]〉
Note that ε stands for the empty process.

123

H. Zhu et al.

For the conditional statement if b then P else Q , the
control flow will be passed to P with probability 1 if b is
satisfied, otherwise it will be passed to Q with probability 1.

〈if b then P else Q , σ 〉 c−→1 〈P, σ 〉, if b(σ)

〈if b then P else Q , σ 〉 c−→1 〈Q, σ 〉, if ¬b(σ)

Here b(σ) returns the value of b in the state σ .
The transitions for iteration are similar to conditional.

〈while b do P, σ 〉 c−→1 〈P ; while b do P, σ 〉, if b(σ)

〈while b do P, σ 〉 c−→1 〈ε, σ 〉, if ¬b(σ)

Time delay can advance time in unit steps. It cannot do
any other types of transitions.

〈#n, σ 〉 1−→ 〈#(n−1), σ 〉, where n > 1

〈#1, σ 〉 1−→ 〈ε, σ 〉
The event @b in @b P is satisfied if Boolean condition b

is currently satisfied, otherwise it will let time advance one
unit. We use “

v−→” to model the event-triggered transition
instead of “

c−→”.

〈@b P, σ 〉 v−→ 〈P, σ 〉, if b(σ)

〈@b P, σ 〉 1−→ 〈@b P, σ 〉, if ¬b(σ)

The selection of process P or Q from P � Q is nondeter-
ministic.

〈P � Q, σ 〉 τ−→ 〈P, σ 〉
〈P � Q, σ 〉 τ−→ 〈Q, σ 〉

For the probabilistic nondeterministic choice P �p Q,
the probability of the selection of P is p and the probability
of the selection of Q is 1 − p.

〈P �p Q, σ 〉 c−→p 〈P, σ 〉
〈P �p Q, σ 〉 c−→1−p 〈Q, σ 〉

The process P ; Q will behave like P initially. After P
terminates, Q will be executed.

if 〈P, σ 〉 β−→ 〈ε, σ ′〉, then 〈P; Q, σ 〉 β−→ 〈Q, σ ′〉
if 〈P, σ 〉 β−→ 〈P ′, σ ′〉, then 〈P; Q, σ 〉 β−→ 〈P ′; Q, σ ′〉

where, P ′ �= ε, and
β−→ can be

τ−→,
v−→,

c−→p and
1−→.

3.2 Probabilistic guarded choice

In order to investigate algebraic properties for parallel
composition, we enrich the language with guarded choice. A
guarded choice construct may perform transitions depicted
in the following five cases.

(1) Let P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)}.

〈P, σ 〉 c−→pi 〈Pi j , σ [ei j/xi j]〉, if bi j (σ)

For any i ∈ I , there is only one j ∈ Ji such that
bi j (σ) = true. This indicates that program P can exe-
cute assignment xi j := ei j with probability pi when the
corresponding condition bi j (σ) = true.

(2) Let P = []i∈I {@bi Pi }.
〈P, σ 〉 v−→ 〈Pi , σ 〉, if bi (σ)

〈P, σ 〉 1−→ 〈P, σ 〉, if
∧

i∈I

bi (σ) = false

If there exists i (i ∈ I) such that bi (σ) is satisfied, the
event @bi is enabled, thus Pi is followed, as depicted in
the first rule. If ∀i•bi (σ) = false, no events are enabled,
only time can advance, as indicated in the second rule.

(3) Let P = []{#1 R}.
〈P, σ 〉 1−→ 〈R, σ 〉

Process P can only do time advancing transition because
it only contains time-delay component. The subsequent
behaviour after one time unit elapses is just the behav-
iour of process R.

(4) Let P = []i∈I {[pi] choice j∈J (bi j &(xi j := ei j) Pi j)}
[][]k∈K {@ck Qk}

〈P, σ 〉 v−→ 〈Qk, σ 〉, if ck(σ) = true

〈P, σ 〉 c−→pi 〈Pi j , σ [ei j/xi j]〉,
if bi j (σ) ∧ (∀k • ck(σ) = false).

For any k ∈ K , if ck(σ) = true, then the event “@ck”
is fired. The first transition reflects this fact. For any
i ∈ I , if bi j (σ) = true and ∀k • ck(σ) = false, then
process P can perform the corresponding assignment
“xi j := ei j ”. Now consider the special case “ck(σ) =
true” and bi j (σ) = true, we only allow event “@ck” to
be fired and do not allow process P to perform assign-
ment xi j := ei j . This fact is shown in the first transition
and reflected by the additional condition “∀k • ck(σ) =
false” in the second transition.

(5) Let P = []i∈I {@bi Pi }[]{#1 R}.

〈P, σ 〉 v−→ 〈Pi , σ 〉 if bi (σ)

〈P, σ 〉 1−→ 〈R, σ 〉 if
∧

i∈I

bi (σ) = false

The first transition indicates that event “@bi ” is fired if
bi (σ) = true. However, if all bi (σ) are evaluated to
false, then only time-advance branch can be selected.

123

PTSC: probability, time and shared-variable concurrency

3.3 Parallel process

For brevity of presentation, we first define the following func-
tion to represent intermediate processes:

par(P, Q, p1) =d f

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P ‖p1 Q if P �= ε and Q �= ε

P if P �= ε and Q = ε

Q if P = ε and Q �= ε

ε if P = ε and Q = ε

This intermediate format can reduce the number of transi-
tions for parallel composition by representing several cases
in one single rule.

Now we define two functions:

stable(〈P, σ 〉) =d f ¬(〈P, σ 〉 τ−→) and

stableE(〈P, σ 〉) =d f ¬(〈P, σ 〉 v−→)

The notation stable(〈P, σ 〉) indicates that process P cannot
perform the transition representing nondeterministic choice
under state σ , while stableE(〈P, σ 〉) indicates that process
P cannot perform event-triggered transitions under state σ .

A probabilistic parallel composition may perform transi-
tions of the following forms:

(1) (a) If 〈P, σ 〉 τ−→ 〈P ′, σ 〉 and stable(〈Q, σ 〉),
then 〈P ‖p1 Q, σ 〉 τ−→ 〈par(P ′, Q, p1), σ 〉.

〈Q ‖p1 P, σ 〉 τ−→ 〈par(Q, P ′, p1), σ 〉 .

(b) If 〈P, σ 〉 τ−→ 〈P ′, σ, 〉 and
〈Q, σ 〉 τ−→ 〈Q′, σ 〉 ,

then 〈P ‖p1 Q, σ 〉 τ−→ 〈par(P ′, Q′, p1), σ 〉
(2) (a) If 〈P, σ 〉 v−→ 〈P ′, σ 〉 and stable(〈Q, σ 〉)

and stableE(〈Q, σ 〉) ,

then 〈P ‖p1 Q, σ 〉 v−→ 〈par(P ′, Q, p1), σ 〉.
〈Q ‖p1 P, σ 〉 v−→ 〈par(Q, P ′, p1), σ 〉 .

(b) If 〈P, σ 〉 v−→ 〈P ′, σ 〉 and
〈Q, σ 〉 v−→ 〈Q′, σ 〉 ,

then 〈P ‖p1 Q, σ 〉 v−→ 〈par(P ′, Q′, p1), σ 〉
(3) If 〈P, σ 〉 c−→p2 〈P ′, σ ′〉 and

stable(〈R, σ 〉) and stableE(〈R, σ 〉) (R ∈ {P, Q}),
then 〈P ‖p1 Q, σ 〉 c−→p1×p2 〈par(P ′, Q, p1), σ ′〉

〈Q ‖p1 P, σ 〉 c−→(1−p1)×p2〈par(Q, P ′, p1), σ ′〉
(4) If 〈P, σ 〉 1−→ 〈P ′, σ ′〉 and 〈Q, σ 〉 1−→ 〈Q′, σ ′〉 and

stable(〈R, σ 〉) and stableE(〈R, σ 〉) (R ∈ {P, Q}),
then 〈P ‖p1 Q, σ 〉 1−→ 〈par(P ′, Q′, p1), σ ′〉.

Transition (1)(a) stands for the case that one component
makes nondeterministic choice and another component is sta-
ble. The whole process also makes a nondeterministic choice

under this case. However, if both components make nondeter-
ministic choice, then the whole process can make nondeter-
ministic choice and the subsequent behaviour is the parallel
composition of the remaining components. Transition (1)(b)
reflects this situation.

The second type stands for the event-fired case. The anal-
ysis is similar to the transitions of type (1). Transition (3)
covers the case of performing an atomic action. If process
P can perform an atomic action with probability p2, then
process P ‖p1 Q and Q ‖p1 P can also perform the same
atomic action with probability p1 × p2 and (1 − p1) × p2

respectively.
If both components can perform a time-advancing transi-

tion, then the whole parallel process can also let time advance.
The aspect is reflected in transition (4).

4 Bisimulation

In operational semantics the behaviour of programs is rep-
resented in terms of execution steps. A computation is thus
composed of a sequence of transitions. Two syntactically
different programs may have the same observational behav-
iour. This means that we need to define program equivalence
(conventionally denoted ≈) based on a reasonable abstrac-
tion. In considering the equivalence of the programs for our
language, bisimulation is a useful approach. It will also be
applied to explore algebraic laws of our language in the next
section.

In what follows we shall give several auxiliary definitions
before we present the definition for bisimulation.

Definition 1 We define the transition relation
id⇒p over

C × C as follows:

〈P, σ 〉 id⇒p 〈P ′, σ 〉 =d f

(P ′ = P ∧ p = 1) ∨
(∃n, P1, p1, . . . , Pn, pn •

〈P, σ 〉 β1−→p1 〈P1, σ 〉 . . .
βn−→pn 〈Pn, σ 〉

∧ Pn = P ′ ∧ p = p1 × · · · × pn)

where
βi−→pi can be of the forms

c−→pi ,
τ−→ and

v−→. We
assume pi = 1 in the latter two cases.

Note that transition relation “
id⇒p” represents a sequence of

transitions which keep the program state unchanged.

Definition 2 We define the following two transition relations
over C × C:

(1) 〈P, σ 〉 c⇒p 〈P ′, σ ′〉
=d f ∃P1 • 〈P, σ 〉 id⇒p1 〈P1, σ 〉 ∧

123

H. Zhu et al.

〈P1, σ 〉 c−→p2 〈P ′, σ ′〉 ∧
p = p1 × p2

(2) 〈P, σ 〉 1⇒p 〈P ′, σ 〉
=d f ∃P1 • 〈P, σ 〉 id⇒p 〈P1, σ 〉 ∧
〈P1, σ 〉 1−→ 〈P ′, σ 〉

Note that the relation
c⇒p is actually a composition of

id⇒p1 and
c−→p2 (p = p1 × p2), while

1⇒p is a com-

position of
id⇒p and

1−→. These two auxiliary relations will
help us present our bisimulation relation in a more abstract
manner with respect to atomic actions and time-advancing.

Definition 3 If a transition 〈P, σ 〉 β⇒p1 〈P ′, σ ′〉 is
duplicated n times, we denote it as

〈P, σ 〉 β⇒n,p1 〈P ′, σ ′〉
where

β⇒p1 can be of the form
c⇒p1 or

1⇒p1 .

Definition 4 A symmetric relation R ⊆ C × C is a bisimu-
lation if and only if for all 〈P, σ 〉R〈Q, σ 〉

(1) If 〈P, σ 〉 x−→ 〈P ′, σ 〉,
then ∃Q′ • 〈Q, σ 〉(τ−→ ∨ v−→)∗〈Q′, σ 〉 ∧

〈P ′, σ 〉R〈Q′, σ 〉 .

where,
x−→ can be of the transition type

τ−→ or
v−→.

(2) If 〈P, σ 〉 c⇒n1,p1 〈P ′, σ ′〉,
(2-1) if σ �= σ ′, then ∃Q′, n2, p2 •

〈Q, σ 〉 c⇒n2,p2 〈Q′, σ ′〉 ∧
〈P ′, σ ′〉R〈Q′, σ ′〉 ∧
n1 × p1 = n2 × p2 .

(2-2) if σ = σ ′, then
〈P ′, σ ′〉R〈Q, σ ′〉 ∧ n1 × p1 = 1

∨ ∃Q′, n2, p2 •
〈Q, σ 〉 c⇒n2,p2 〈Q′, σ ′〉 ∧
〈P ′, σ ′〉R〈Q′, σ ′〉 ∧
n1 × p1 = n2 × p2 .

(3) If 〈P, σ 〉 1⇒n1,p1 〈P ′, σ 〉,
then ∃Q′, n2, p2 •

〈Q, σ 〉 1⇒n2,p2 〈Q′, σ 〉 ∧
〈P ′, σ 〉R〈Q′, σ 〉 ∧
n1 × p1 = n2 × p2 .

Two configurations should have the same interface when
studying their equivalence; i.e., their state parts should be
the same. Our bisimulation relation is based on three dif-
ferent kinds of observations: a τ transition or a v-transition
(triggered by an event), atomic action, and time advancing.

Note that (2-2) in the above definition models the case that
if a process performs an atomic action without any contribu-
tion to the program state change, then its bisimilar process

may or may not perform an atomic action with similar effect.
This partly reflects the concept of weak bisimulation [19,20].

Lemma 1 If S1 and S2 are bisimulations (over C×C), then
the following relations are also bisimulations (over C × C) :
(1) I d (2) S1 ◦ S2 (3) S1 ∪ S2

where, I d is the identity relation and S1 ◦ S2 stands for the
relational composition of S1 and S2.

Definition 5 (1) Two configurations 〈P1, σ 〉 and 〈P2, σ 〉
are bisimilar, written as 〈P1, σ 〉 ≈ 〈P2, σ 〉, if there
exists a bisimulation relation R such that 〈P1, σ 〉R
〈P2, σ 〉.

(2) Two processes P and Q are bisimilar, denoted as P ≈
Q, if for any state σ

〈P, σ 〉 ≈ 〈Q, σ 〉

Lemma 2 ≈ is an equivalence relation over C × C.

Theorem 3 ≈ is a congruence.

Proof We can proceed the proof by structural induction. The
detailed proof is left in Appendix A. ��
This theorem indicates that bisimilar relation ≈ is preserved
by all operators.

5 Algebraic laws

Operational semantics can be used to deduce interesting
properties of programs. In this section, we investigate the
algebraic laws of our timed language with probability and
shared-variable concurrency.

For assignment, conditional, iteration, nondeterministic
choice and sequential composition, our language enjoys sim-
ilar algebraic properties as those reported in [9,12]. In what
follows, we shall only focus on novel algebraic properties
with respect to time, probabilistic nondeterministic choice
and parallel composition.

Two consecutive time delays can be combined into a single
one, where the length of the delay is the sum of the original
two lengths.

(delay-1) #n; #m = #(n + m)

Probabilistic nondeterministic choice is idempotent.

(prob-1) P �p P = P

However, it is not purely symmetric and associative. Its sym-
metry and associativity rely on the change of the associated
probabilities:

(prob-2) P �p1 Q = Q �1−p1 P

123

PTSC: probability, time and shared-variable concurrency

(prob-3) P �p (Q �q R) = (P �x Q) �y R
where x = p/(p + q − p × q) and y = p + q − p × q

The proof for law (prob-3) is given in Appendix B. Other
proofs are omitted (except for the proof of law (par-3-1)).

Sequential composition also distributes through probabi-
listic nondeterministic choice.

(prob-4) P; (Q �p1 R) = (P; Q) �p1 (P; R)

(prob-5) (P �p1 Q); R = (P; R) �p1 (Q; R)

Probabilistic parallel composition is also not purely symmet-
ric and associative. Its symmetry and associativity rely on the
change of the associated probabilities as well.

(par-1) P ‖p Q = Q ‖1−p P

(par-2) P ‖p (Q ‖q R) = (P ‖x Q) ‖y R

where, x = p/(p + q − p × q) and y = p + q − p × q

In what follows we give a collection of parallel expansion
laws, which enable us to expand a probabilistic parallel com-
position to a guarded choice construct. As mentioned earlier,
there exist five types of guarded choice. To take into account
a parallel composition of two arbitrary guarded choices, we
end up with fifteen different expansion laws.

The first five laws we shall discuss deal with parallel
compositions where the first component is an assignment-
guarded choice.

If the second component is also an assignment-guarded
choice, the scheduling rule is that any assignment could be
scheduled with the associated probability provided that its
Boolean condition is satisfied. Suppose the assignment guard
from the first component is scheduled, the subsequent behav-
iour is the parallel composition of the remaining process of
the first component with the whole second component. Law
(par-3-1) below depicts this case.

(par-3-1) Let

P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)} and

Q = []k∈K {[qk] choicel∈Lk (bkl&(xkl := ekl) Qkl)}
Then

P ‖r Q

= []i∈I {[r × pi] choice j∈Ji (bi j &(xi j := ei j)

par(Pi j , Q, r)}
[][]k∈K {[(1 − r) × qk] choicel∈Lk (bkl&(xkl := ekl)

par(P, Qkl , r)}
Proof The transitions of P can be described as below:

〈P, σ 〉 c−→pi 〈Pi j , σ [ei j/xi j]〉, if bi j (σ)

〈Q, σ 〉 c−→qk 〈Qkl , σ [ekl/xkl]〉, if bkl(σ)

For the above algebraic laws, based on the transition rules for
parallel composition, we can have the transition for P ‖r Q
(L H S).

〈L H S, σ 〉 c−→r×pi 〈Pi j , σ [ei j/xi j]〉, if bi j (σ)

〈L H S, σ 〉 c−→(1−r)×qk 〈Qkl , σ [ekl/xkl]〉, if bkl(σ)

For the guarded choice expansion of the algebraic laws
(RH S), its transition rules can be described as:

〈RH S, σ 〉 c−→r×pi 〈Pi j , σ [ei j/xi j]〉, if bi j (σ)

〈RH S, σ 〉 c−→(1−r)×qk 〈Qkl , σ [ekl/xkl]〉, if bkl(σ)

Because the two processes (L H S and RH S) have the same
transitions, we can say that their behaviour are equal (also
bisimilar). ��

If the second component is an event-guarded choice, the
behaviour of the parallel composition can be described as the
guarded choice of a set of assignment-guarded components
and a set of event-guarded components. If an assignment
guard (from the first component) is scheduled first, the subse-
quent behaviour is the parallel composition of the remaining
part of the first component (Pi j) with the second component
(Q); if an event guard is triggered, the subsequent behaviour
is the parallel composition of the first component (P) with
the remaining part of the second component (Qk). This is
presented in law (par-3-2).

(par-3-2) Let

P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)}
and

Q = []k∈K {@ck Qk}
Then

P ‖r Q

= []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) par(Pi j , Q, r)}
[][]k∈K {@ck par(P, Qk, r)}

If the second component is a time delay construct, then
only assignment guards can be scheduled initially. For the
whole parallel composition, the subsequent behaviour fol-
lowing the scheduled assignment guard is the parallel com-
position of the remaining part of the first component (Pi j)
with the time delay component. The whole process does not
have time delay component. This case is expressed in law
(par-3-3).

(par-3-3) Let

P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)} and

Q = []{#1 R}
Then

P ‖r Q

=[]i∈I {[pi] choice j∈Ji (bi j &(xi j :=ei j) par(Pi j , Q, r))}

123

H. Zhu et al.

If the second component is a guarded choice comprising
a set of assignment components and a set of event guarded
components, the guarded choice for the parallel process also
contains assignment components. The probability of the
assignment should be updated based on the associated prob-
ability for the assignments from each parallel branch and
the probability of the parallel composition. Further, it also
contains the event components. Law (par-3-4) expresses this
case.

(par-3-4) Let

P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)} and

Q = []k∈K {[qk] choicel∈Lk (bkl&(xkl := ekl) Qkl)}
[][]m∈M {@cm Rm}

Then

P ‖r Q

= []i∈I {[r × pi] choice j∈Ji (bi j &(xi j := ei j)

par(Pi j , Q, r))}
[][]k∈K {[(1 − r) × qk] choicel∈Lk (bkl&(xkl := ekl)

par(P, Qkl , r)}
[][]m∈M {@ck par(P, Rm, r)}

If the second component is composed of a set of event guard
component and the time delay component, the parallel pro-
cess only has assignment components and event components.
It does not have time delay component due to the assignment
components in the first parallel branch.

(par-3-5) Let

P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)} and

Q = []l∈L{@cl Ql}[]{#1 R}

Then

P ‖r Q

= []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) par(Pi j , Q, r))}
[][]l∈L{@cl par(P, Ql , r)}

In what follows, we consider parallel compositions where
the first component is an event-guarded choice, while the
second component can be of any form.

If the second component is also an event-guarded choice,
there are several scenarios. If one guard from the first com-
ponent is triggered but no guards from the second component
are triggered, the subsequent behaviour is the parallel com-
position of the remaining part of the first component with
the second component. If two guards from both components
are triggered simultaneously, the subsequent behaviour is the
parallel composition of the remaining processes of both sides.

This is illustrated in law (par-3-6).

(par-3-6) Let P = []i∈I {@bi Pi } and

Q = [] j∈J {@c j Q j }

Then

P ‖r Q

= []i∈I {@(bi ∧ ¬c) par(Pi , Q, r)}
[][] j∈J {@(c j ∧ ¬b) par(P, Q j , r)}
[][]i∈I∧ j∈J {@(bi ∧ c j) par(Pi , Q j , r)}

where, b = ∨i∈I bi and c = ∨ j∈J c j

If the second component is a time delay construct, the
whole process will wait for some events to be triggered.
The whole process can also let time advance. Law (par-3-7)
expresses this case.

(par-3-7) Let P = []i∈I {@bi Pi } and Q = []{#1 R}

Then

P ‖r Q = []i∈I {@bi par(Pi , Q, r)}[]{#1 par(P, R, r)}

If the second component is the guarded choice of a set of
assignment-guarded components and a set of event-guarded
components, any assignment guard can be scheduled. As
both components have event-guard components, there are
also three possibilities for the guards to be triggered, as dis-
cussed in (par-3-6). This case is described in law (par-3-8).
(par-3-8) Let P = []i∈I {@bi Pi } and

Q = [] j∈J {[q j] choicek∈K j (b jk&(x jk := e jk) Q jk)}
[][]l∈L{@cl Rl}

Then

P ‖r Q

=[] j∈J {[q j] choicek∈K j (bi j &(x jk :=e jk) par(Pjk, Q, r))}
[][]i∈I {@(bi ∧ ¬c) par(Pi , Q, r)}
[][]l∈L{@(cl ∧ ¬b) par(P, Rl , r)}
[][]i∈I∧l∈L{@(bi ∧ cl) par(Pi , Ql , r)}

where, b,= ∨i∈I bi and c = ∨l∈L cl

If the second component is composed of a set of event
components and time components, the whole parallel pro-
cess also has event components and their structure is similar
to the one in law (par-3-8). Further, the parallel process also
has time delay component. Law (par-3-9) describes this case.

(par-3-9) Let P = []i∈I {@bi Pi } and

Q = [] j∈J {@c j Q j }[]{#1 R}

123

PTSC: probability, time and shared-variable concurrency

Then

P ‖r Q

= []i∈I {@(bi ∧ ¬c) par(Pi , Q, r)}
[][] j∈J {@(c j ∧ ¬b) par(P, Q j , r)}
[][]i∈I∧ j∈J {@(bi ∧ c j) par(Pi , Q j , r)}
[]{#1 par(P, R, r)}

where, b = ∨i∈I bi and c = ∨ j∈J c j

We shall next consider the parallel composition where the
first component is a time-delay guarded construct.

The following law captures the case where the second
component is also a time-delay guarded construct. The whole
process performs a time delay and then behaves as the par-
allel composition of the remaining parts from both sides:

(par-3-10) Let P = []{#1 R} and Q = []{#1 T }}
Then

P ‖r Q = []{#1 par(R, T, r)}
If the second component is composed of a set of assignment
components and a set of event components, the whole par-
allel process also has these types of components. It does not
have time delay components due to the assignment compo-
nents in the second parallel branch.

(par-3-11) Let

P = []{#1 T } and

Q = []i∈I {[qi] choice j∈Ji (b jk&(xi j := ei j) Qi j)}
[][]k∈K {@ck Rk}

Then

P ‖r Q

= []i∈I {[qi] choice j∈Ji (bi j &(xi j := ei j) par(P, Qi j , r))}
[][]k∈K {@ck par(P, Rk, r)}

If the second component is composed of a set of event guard
components and time delay component, the whole process
also has this structure. Law (par-3-12) shows this case.

(par-3-12) Let P = []{#1 T } and

Q = []i∈I {@bi Qi }[]{#1 R}
Then

P ‖r Q = []i∈I {@bi par(P, Qi , r)}[]{#1 par(T, R, r)}
We now move to the parallel composition where the first

component comprises both assignment-guarded components
and event-guarded components. Law (par-3-13) stands for
the case that the second component also has this type of
structures. For the whole parallel process, assignment can be
from any of the two parallel branches with the probability
updated.

(par-3-13) Let

P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)}
[][]k∈K {@bk Rk}

and

Q = []l∈L{[ql] choicem∈Ml (clm&(xlm := elm) Plm)}
[][]n∈N {@cn Tn}

Then

P ‖r Q

=[]i∈I {[r × pi] choice j∈Ji (bi j &(xi j :=ei j) par(Pi j , Q, r))}
[][]l∈L{[(1 − r) × ql] choicem∈Ml (clm&(xlm := elm)

par(P, Qlm, r))}
[][]k∈K {@(bk ∧ ¬c) par(Rk, Q, r)}
[][]n∈N {@(cn ∧ ¬b) par(Rk, Q, r)}
[][]k∈K∧n∈N {@(bk ∧ cn) par(Rk, Qn, r)}

where, b = ∨k∈K bk and c = ∨n∈N cn

The following law (par-3-14) captures the scenario where
the second component consists of both event-guarded choices
and time-delays:

(par-3-14) Let

P = []i∈I {[pi] choice j∈Ji (bi j &(xi j := ei j) Pi j)}
[][]k∈K {@bk Rk}

and Q = []l∈L{@cl Ql}[]{#1 T }
Then

P ‖r Q

= []i∈I {[pi] choice j∈J (bi j &(xi j := ei j) par(Pi j , Q, r))}
[][]k∈K {@(bk ∧ ¬c) par(Rk, Q, r)}
[][]l∈L{@(cl ∧ b) par(P, Ql , r)}
[][]k∈K∧l∈L{@(bk ∧ cl) par(Rk, Ql , r)}

where, b = ∨k∈K bk and c = ∨l∈L cl

This law is similar to the law (par-3-13) given above.
The following law (par-3-15) is about the parallel com-

position of two guarded choices composing of both event-
guarded components and time delay components.

(par-3-15) Let P = []i∈I {@bi Pi }[]{#1 R} and

Q = [] j∈J {@c j Q j }[]{#1 T }

123

H. Zhu et al.

Then

P ‖r Q

= []k∈K {@(bi ∧ ¬c) par(Pi , Q, r)}
[][] j∈J {@(c j ∧ ¬b) par(P, Q j , r)}
[][] j∈J {@(bi ∧ c j) par(Pi , Q j , r)}
[]{#1 par(R, T, r)}

where, b = ∨i∈I bi and c = ∨ j∈J c j

6 Animation of operational semantics

Operational semantics provides a set of transition rules that
models how a program performs step by step. If we can have
an executed version of operational semantics, the correct-
ness of operational semantics can be checked from various
test results. This means that a simulator for the operational
semantics of our proposed language is highly desirable.

Transition rules for the operational semantics can be trans-
lated into Prolog logic programming clauses [3]. Prolog has
been successfully applied in rapid-prototyping, including
[1,2]. Building on this, for the development of the simu-
lator of PTSC, we have selected Prolog as our programming
language.

The configuration in a transition can be expressed as a list
(indicated by square brackets) in Prolog:

[P, Sigma]
where state Sigma can also be implemented as a list that
contains values for program variables.

The transitions for the operational semantics can be
directly translated into Prolog clauses. For some individual
specific transitions, there may be several transitions for that
kind of transition expressed in Prolog because it covers sev-

eral different cases. For example, for the transition (3) of
parallel composition (see p. 5):

If 〈P, σ 〉 c−→p2 〈P ′, σ ′〉 and

stable(〈R, σ 〉) and stableE(〈R, σ 〉)(R ∈ {P, Q}),
then 〈P ‖p1 Q, σ 〉 c−→p1×p2 〈par(P ′, Q, p1), σ ′〉.

〈Q ‖p1 P, σ 〉 c−→(1−p1)×p2 〈par(Q, P ′, p1), σ ′〉.

This transition can be translated into Prolog clauses shown
in Fig. 1. Every clause can represent the specific individual
case.

Next we use the example below to demonstrate how the
simulator works. Consider the program (x := x + 1 ; x :=
x + 2) ‖0.4 (x := 2 ; x := 4). The execution obtained from
the simulator is shown in Fig. 2. From the execution based
on the simulator, we know there are six execution sequences
leading the program to the terminating state, where the tran-
sitions contain their own specific probability.

In total, there are six execution sequences leading the orig-
inal program to the terminating state, where each transition
step contains probability either 0.4, 0.6 or 1. These six exe-
cution sequences are:

(1)(2)(3)(4)(5) (1)(2)(6)(7)(8)

(1)(2)(6)(9)(10) (1)(11)(12)(13)(14)

(1)(11)(15)(16)(17) (1)(11)(15)(18)(19)

where (i) stands for row i (given at the end of row i).

In summary, the simulator can display the execution
sequences of programs based on the operational semantics.
It provides an animation tool for our operational semantics.
From various test examples including those above, the results
displayed give us additional confidence concerning the valid-
ity of the operational semantics.

Fig. 1 Transition rules in
Prolog: an example

123

PTSC: probability, time and shared-variable concurrency

Fig. 2 The simulation: an
example

7 Conclusion

In this paper, we integrated probability with a timed con-
current language. The probability feature was added into
non-deterministic choice, parallel composition and guarded
choice. Parallel processes communicate with each other via
shared variables. We formalized a SOS for the language
which incorporates time, concurrency and probability. Tran-
sitions are classified into four types: probabilistic atomic
action transition, time delay transition, non-deterministic
selection transition and event triggered transition. On top of
the operational model, an abstract bisimulation relation was
defined and a rich set of algebraic laws have been derived
for program equivalence. A prototype was also built for the
animation of the execution of probabilistic programs.

As an immediate future work, it would be interesting
to work out a denotational model and investigate the con-
sistency between operational and denotational models. We
would like to explore an observation-oriented model as advo-
cated in UTP [12], which, we believe, would make the linking
theory easier to build. The probabilistic trace structure could
be applied in achieving the UTP-based denotational model.

It is also worth mentioning that the approach we integrate
probability with other language features is rather general. It
can be adapted when adding the probability feature into com-
plex computational models catered for various application
domains. Internet-based computing can be such an applica-
tion domain. With the development of Internet technology,
web services and transactions have been becoming more and
more important in practice. It would be interesting to see if
probability can be added into the recently proposed web ser-
vices and web transaction models [13,14,30,31]. It will also

be interesting to see if probability can be taken into account
when reasoning about business processes [15].

Acknowledgments This work is supported in part by National Basic
Research Program of China (No. 2005CB321904), National High Tech-
nology Research and Development Program of China (No. 2007AA01
0302), National Natural Science Foundation of China (No. 90718004),
Macau Science and Technology Development PEARL project
(No. 041/2007/A3) and Shanghai Leading Academic Discipline Pro-
ject (No. B412). Shengchao Qin is supported in part by the UK EPSRC
funded project EP/E021948/1. Jonathan P. Bowen is a Visiting Profes-
sor at King’s College London and an Emeritus Professor at London
South Bank University.

Appendix

A Proof of Theorem 3: ≈ is a congruence

Assume P ≈ Q. We know for any state σ , 〈P, σ 〉 ≈ 〈Q, σ 〉.
This means there exists a bisimulation Sσ such that 〈P, σ 〉 ≈
〈Q, σ 〉. Let S = ∪σ Sσ . We know S is also a bisimulation.

(1) For the proof of P ; R ≈ Q ; R, let

S1,1 =d f I d ∪ { (〈P; R, σ 〉, 〈Q; R, σ 〉) | 〈P, σ 〉
S 〈Q, σ 〉 }

For the proof of R ; P ≈ R ; Q, let

S1,2 =d f S ∪ { (〈R; P, σ 〉, 〈R; Q, σ 〉) | 〈P, σ 〉
S 〈Q, σ 〉 }

123

H. Zhu et al.

(2) For the proof of

if b then P else R ≈ if b then P else R,

let

S2,1 =d f I d ∪ S∪
{ (〈if b then P else R, σ 〉,
〈if b then Q else R, σ 〉 | 〈P, σ 〉 S 〈Q, σ 〉 },

For the proof of

if b then R else P ≈ if b then R else Q,

let

S2,2 =d f I d ∪ S∪
{ (〈if b then R else P, σ 〉,
〈if b then R else Q, σ 〉)

| 〈P, σ 〉 S 〈Q, σ 〉 }

(3) For the proof of while b do P ≈ while b do Q, let

S3 =d f I d∪
{ (〈while b do P, σ 〉, 〈while b do Q, σ 〉)
| 〈P, σ 〉 S 〈Q, σ 〉 }∪
{ (〈U ; while b do P, σ 〉, 〈V ; while b do Q, σ 〉)
| 〈P, σ 〉 S 〈Q, σ 〉 ∧ 〈U, σ 〉 S 〈V, σ 〉 }

(4) For the proof of P � R ≈ Q � R, let

S4,1 =d f I d ∪ S ∪
{(〈P�R, σ 〉, 〈Q�R, σ 〉) | 〈P, σ 〉 S 〈Q, σ 〉}

For the proof of R � P ≈ R � Q, let

S4,2 =d f I d ∪ S ∪
{(〈R�P, σ 〉, 〈R�Q, σ 〉) | 〈P, σ 〉 S 〈Q, σ 〉}

(5) For the proof of P �p R ≈ Q �p R, let

S5,1 =d f I d ∪ S ∪
{(〈P�p R, σ 〉, 〈Q�p R, σ 〉) | 〈P, σ 〉S〈Q, σ 〉}

For the proof of R �p P ≈ R �p Q, let

S5,2 =d f I d ∪ S ∪
{(〈R�p P, σ 〉, 〈R�p Q, σ 〉) | 〈P, σ 〉S〈Q, σ 〉}

(6) For the proof of the probabilistic guarded choice, with-
out loss of generality, we only consider the first type of
guarded choice here. Let

T1 = []{[p] choice(b&(x := e) P, G1), G2} and

T2 = []{[p] choice(b&(x := e) Q, G1), G2}

In order to consider the proof of T1 ≈ T2, let

S6 =d f I d ∪ S ∪
{(〈T1, σ 〉, 〈T2, σ 〉) | 〈P, σ 〉, S 〈Q, σ 〉}

(7) For the proof of P ‖p R ≈ Q ‖p R, let

S7,1 =d f I d ∪ S ∪
{(〈P ‖p R, σ 〉, 〈Q ‖p R, σ 〉) | 〈P, σ 〉S〈Q, σ 〉}

For the proof of R ‖p P ≈ R ‖p Q, let

S7,2 =d f I d ∪ S ∪
{(〈R ‖p P, σ 〉, 〈R ‖p P, σ 〉)|〈P, σ 〉S〈Q, σ 〉}

We can show that each Si, j (or Si)is a bisimulation. ��

B Proof of Law (prob-3)

Now we give the proof for the algebraic law (prob-3)
(see p. 7).
Let

S =d f { (〈P �p1 (Q �p2 R), σ 〉, 〈(P �x Q) �y R), σ 〉)
| P, Q, R are programs ∧ σ ∈ Σ ∧ p1, p2 ∈ (0, 1) }

where,

(1) x = p1/(p1 + p2 − p1 × p2),

y = p1 + p2 − p1 × p2

(2) Σ denotes the set containing all the states.

Further, let T =d f I d ∪ S ∪ S−1.
Now we need to prove that T is a bisimulation relation.

(1) From the transitions of �p, we know that both 〈P �p1

(Q �p2 R), σ 〉 and 〈(P �x Q)�y R), σ 〉 cannot do tran-

sition of type
τ−→ and

v−→. This indicates that we don’t
need to check the first item of bisimulation definition.

(2) Now we need to prove the item (2) of bisimulation rela-
tion for T .

(a) If 〈P, σ 〉 c⇒n′
1,p′

1
〈P ′, σ ′〉,

then 〈P �p1 (Q �p2 R), σ 〉 c⇒n′
1,p1×p′

1
〈P ′, σ ′〉

and

123

PTSC: probability, time and shared-variable concurrency

〈(P �x Q) �y R, σ 〉 c⇒n′
1,u1

〈P ′, σ ′〉
where, u1 = y × x × p′

1.
From x and y, we know u1 = p1 × p′

1.

(b) If 〈Q, σ 〉 c⇒n′
2,p′

2
〈Q′, σ ′〉,

then 〈P �p1 (Q �p2 R), σ 〉 c⇒n′
2,(1−p1)×p2×p′

2〈P ′, σ ′〉
and

〈(P �x Q) �y R, σ 〉 c⇒n′
2,u2

〈P ′, σ ′〉
where, u2 = y × (1 − x) × p′

2.
From x and y, we know that u2 = (1− p1)× p2 ×
p′

2

(c) If 〈R, σ 〉 c⇒n′
3,p′

3
〈R′, σ ′〉,

then
〈P �p1 (Q �p2 R), σ 〉 c⇒n′

1,(1−p1)×(1−p2)×p′
3〈P ′, σ ′〉

and

〈(P �x Q) �y R, σ 〉 c⇒n′
3,u3

〈P ′, σ ′〉
where, u3 = (1 − y) × p′

3.
From x and y, we know u3 = (1 − p1) ×
(1 − p2) × p′

3.
The above analysis leads to the satisfactory of the
item (2) of bisimulation definition for the pair of
configurations (〈P �p1 (Q �p2 R), σ 〉, 〈(P �x

Q) �y R), σ 〉).
(3) The proof of item (3) of bisimulation relation for T is

similar to the above proof of item (2). ��

References

1. Bowen JP (2000) Combining operational semantics, logic pro-
gramming and literate programming in the specification and anima-
tion of the verilog hardware description language. In: Proceedings
of IFM 2000: 2nd international conference on integrated formal
methods. Lecture notes in computer science. vol 1945. Springer,
Heidelberg, pp 277–296

2. Bowen JP, He J, Xu Q (2000) An animatable operational semantics
of the verilog hardware description language. In: Proceedings of
ICFEM 2000: 3rd IEEE international conference on formal engi-
neering methods. IEEE Computer Society Press, pp 199–207

3. Clocksin WF, Mellish CS (2003) Programming in prolog, 5th edn.
Springer, Heidelberg

4. de Bakker J, de Vink E (1996) Control flow semantics. MIT,
Cambridge

5. den Hartog J (2002) Probabilistic extensions of semantic models.
PhD thesis, Vrije University, The Netherlands

6. den Hartog J, de Vink E (1999) Mixing up nondeteminism and
probability: a premliminary report. Electronic Notes in Theoreti-
cal Computer Science 22

7. den Hartog J, de Vink E (2002) Verifying probabilistic programs
using a Hoare like logic. Int J Found Comput Sci 40(3):315–340

8. den Hartog J, de Vink E, de Bakker J (2001) Matrix semantics and
full abstractness for action refinement and probabilistic choice.
Electronic Notes in Theoretical Computer Science 40

9. He J (1994) Provably correct systems: modelling of communica-
tion languages and design of optimized compilers. International
Series in Software Engineering. McGraw-Hill, NY

10. He J, Zhu H (2000) Formalising Verilog. In: Proceedings of ICECS
2000: IEEE international conference on electronics, circuits and
systems. IEEE Computer Society Press, Nanjing, pp 412–415

11. He J, Seidel K, McIver A (1997) Probabilistic models for the
guarded command language. Sci Comput Program 28(2–3):171–
192

12. Hoare CAR, He J (1998) Unifying theories of programming. Inter-
national series in computer science. Prentice Hall, Englewood
Cliffs

13. Li J, Zhu H, Pu G, JH (2007) A formal model for compensable
transactions. In: Proceedings of ICECCS 2007: 12th IEEE inter-
national conference on engineering of complex computer systems.
IEEE Computer Society Press, Nanjing, pp 64–73

14. Li J, Zhu H, He J (2008) An observational model for transactional
calculus of services orchestration. In: Proceedings of ICTAC 2008:
5th international colloquium on theoretical aspects of computing,
Istanbul, Turkey, 1–3 September, 2008. Lecture notes in computer
science, vol 5048. Springer, Heidelberg, pp 149–168

15. Luo C, Qin S, Qiu Z (2008) Verifying bpel-like programs with hoare
logic. In: Proc. TASE 2008: 2nd IEEE international symposium on
theoretical aspects of software engineering. IEEE Computer Soci-
ety, Nanjing, China, pp 151–158

16. McIver A, Morgan C (2001) Partial correctness for probabilistic
demonic programs. Theor Comput Sci 266(1-2):513–541

17. McIver A, Morgan C (2004) Abstraction, Refinement and Proof of
Probability Systems. Monographs in Computer Science. Springer,
Heidelberg

18. McIver A, Morgan C, Seidel K (1996) Probabilistic predicate
transformers. ACM Trans Program Lang Syst 18(3):325–353

19. Milner R (1990) Communication and Concurrency. International
Series in Computer Science. Prentice Hall, Englewood Cliffs

20. Milner R (1999) Communication and mobile system: π -calculus.
Cambridge University Press, London

21. Ndukwu U, Sanders JW (2008) Reason about a distributed proba-
bilistic system. Tech. Rep. 401, UNU/IIST, P.O. Box 3058, Macau
SAR, China

22. Núñez M (2003) Algebraic theory of probabilistic processes.
J Logic Algebraic Program 56:117–177

23. Núñez M, de Frutos-Escrig D (1996) Testing semantics for prob-
abilistic LOTOS. In: Proceedings of FORTE’95: IFIP TC6 eighth
international conference on formal description techniques, Mon-
treal, Canada, October 1995. IFIP Conference Proceedings, vol 43.
Chapman & Hall, London, pp 367–382

24. Núñez M, de Frutos-Escrig D, Díaz LFL (1995) Acceptance
trees for probabilistic processes. In: Proceedings of CONCUR’95:
6th international conference on concurrency, Philadelphia, PA,
USA, August, 1995. Lecture Notes in Computer Science, vol 962.
Springer, Heidelberg

25. Park S, Pfenning F, Thrun S (2005) A probabilistic language based
upon sampling functions. In: Proceedings of POPL 2005: 32nd
ACM SIGPLAN-SIGACT symposium on principles of program-
ming languages. ACM, New York, pp 171–182

26. Plotkin G (1981) A structural approach to operational semantics.
Tech. Rep. 19, University of Aahus. Also published in J Logic
Algebraic Program. 60–61:17–139, 2004

27. Zhu H (2005) Linking the semantics of a multithreaded discrete
event simulation language. PhD thesis, South Bank University,
London

28. Zhu H, He J (2000) A semantics of Verilog using duration calculus.
In: Proceedings of international conference on software: theory and
practice. pp 421–432

29. Zhu H, Qin S, He J, Bowen JP (2006) Integrating probability with
time and shared-variable concurrency. In: Proceedings of SEW-30:

123

H. Zhu et al.

30th NASA/IEEE software engineering workshop. IEEE Computer
Society, Nanjing, pp 179–189

30. Zhu H, He J, Li J (2007a) Unifying denotational semantics with
operational semantics for web services. In: Proceedings of ICDCIT
2007: 4th international conference on distributed computing and
internet technology, Bangalore, India, 17–20 December 2007.

Lecture notes in computer science, vol 4882. Springer, Heidelberg,
pp 225–239

31. Zhu H, He J, Li J, Bowen JP (2007b) Algebraic approach to linking
the semantics of web services. In: Proceedings of SEFM 2007: 5th
IEEE international conference on software engineering and formal
methods. IEEE Computer Society Press, pp 315–326

123

	PTSC: probability, time and shared-variable concurrency
	Abstract
	1 Introduction
	2 Probabilistic language PTSC
	3 Operational semantics
	3.1 Sequential process
	3.2 Probabilistic guarded choice
	3.3 Parallel process

	4 Bisimulation
	5 Algebraic laws
	6 Animation of operational semantics
	7 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

