
A Composable Mixed Mode Concurrency
Control Semantics for Transactional Programs

Granville Barnett1 and Shengchao Qin2,3

1 School of Engineering and Computing Sciences, Durham University
2 School of Computing, Teesside University

3 State Key Lab. for Novel Software Technology, Nanjing University
granville.barnett@durham.ac.uk, s.qin@tees.ac.uk

Abstract. Most software transactional memories employ optimistic con-
currency control. A pessimistic semantics, however, is not without its
benefits: its programming model is often much simpler to reason about
and supports the execution of irreversible operations. We present a pro-
gramming model that supports both optimistic and pessimistic concur-
rency control semantics. Our pessimistic transactions, guaranteed trans-
actions (gatomics), afford a stronger semantics than that typically em-
ployed by pessimistic transactions by guaranteeing run once execution
and safe encapsulation of the privatisation and publication idioms. We
describe our mixed mode transactional programming language by giving
a small step operational semantics. Using our semantics and their derived
schedules of actions (reads and writes) we show that conflicting trans-
actions (atomics) and gatomics are serialisable. We then go on to define
schedules of actions in the form of Java’s memory model (JMM) and
show that the same properties that held under our restrictive memory
model also hold under our modified JMM.

1 Introduction

Software transactional memory (STM) [27] has gained considerable traction
in recent years and has subsequently been adopted by a number of languages
[10, 13]. STM is only an alternative to locks. One cannot safely substitute every
occurrence of a lock with a transaction and guarantee the original program se-
mantics. This is mainly due to the optimistic concurrency control traditionally
employed by STMs. For example, one cannot optimistically execute an irre-
versible operation and still guarantee consistency. Similarly, optimistic concur-
rency control is not ideal for executing expensive operations, catering for “hot”
regions of memory [29], or for systems with finite resources [4].

One approach of addressing these issues is to permit pessimistic and opti-
mistic transactions to co-exist. Previous literature such as that by McCloskey
et al. [21], Ziarek et al. [32], Ni et al. [23], Welc et al. [31] and Sonmez et al.
[29] have investigated such approaches, with each providing a different take on
how and why pessimism should be introduced into systems already exposing
optimistic STM. However, each lack a formal underpinning when addressing

two problems: when pessimistic semantics are necessary due to the semantics
of the operations being performed, and how pessimistic and optimistic modes
of concurrency control safely co-exist. The closest work on providing a formal
foundation for pessimistic and optimistic transactions was by Koskinen et al.
[16] but they treat each in isolation. Other work also exists on the semantics
of STM such as that by Abadi et al. [1] but again does not provide a model of
co-existence for transactions of differing concurrency control semantics.

The focus of this paper is on presenting an operational semantics for a
programming language that supports both optimistic and pessimistic trans-
actions. We partition transactional mediation of accesses to memory into two
types: transactions (atomic) which are optimistic, and guaranteed transactions
(gatomic) which are pessimistic. Atomics under our system have the following
properties (in addition to the ACI properties [8]): (i) word-based : conflicts are
detected at the granularity of memory locations; (ii) out-of-place: atomics op-
erate upon a thread-local copy of their dataset which is only observed by other
threads should the atomic commit; (iii) optimistic: a contention manager [12]
determines, at the point when all constituent commands of an atomic have been
executed, whether or not the atomic should commit or abort; and (iv) weakly
isolated [6, 7]: atomic accesses are only isolated w.r.t. other atomic and gatomic
accesses. The best comparison of a gatomic w.r.t. the current literature is that
a gatomic is an obstinate transaction [23] but is guaranteed to never abort, ei-
ther prior to, or during its execution, and infers a stronger notion of its dataset.
Multiple gatomics can run at any given time provided consistency invariants
are maintained, unlike single owner read locks presented by Welc et al. [31]. A
constituent operation of a gatomic is guaranteed to only ever run once. Further-
more, gatomics offer a sensible and intuitive encapsulation of the privatisation
and publication idioms which are erroneous under some STMs [30]. In addition
to being word-based and out-of-place, gatomics entail the following properties:
(i) pessimistic: contention is resolved at the point of execution; and (ii) dataset
inference: the transitive closure of reachable objects from those referenced within
the gatomic form the dataset of the gatomic. Atomics and gatomics can be freely
composed w.r.t. one another.

The algorithm in Fig. 1 uses a gatomic to privatise a list suffix to the invok-
ing thread. Under an atomic semantics the privatisation of the list suffix may
not be consistent [30]. Executing privatiseListSuffix under a gatomic se-
mantics always maintains memory consistency. For example, given two threads
T1 and T2, where T1 and T2 invoke list.privatiseListSuffix(5) and resp.
list.privatiseListSuffix(3) on a shared list object list (a singly linked
list) which comprises of the values [1..10], we have either T1 and T2 printing
[5..10] and resp. [3, 4], or [3..10] and resp. []. Under other STMs [30] this exam-
ple would require programmer specified logic to explicitly transfer ownership of
heap locations to the invoking thread [30], however under a gatomic semantics
this process is managed entirely by the underlying system.

Our guiding philosophy can be summarised as follows: optimistic concur-
rency control (atomic) should be used in most cases, but for operations that

class LinkedLis t {
// . . .
gatomic p r i v a t i s e L i s t S u f f i x (Value v) {

prev := head ;
curr := prev . next ;
while (curr . va lue != v) {

prev := curr ; curr := curr . next ;
i f (curr == n u l l) goto 9 ;

}
prev . next = n u l l ;
while (curr != n u l l) {

pr in t (curr . va lue) ;
curr = curr . next ;

} }
// . . .

}

Fig. 1. Gatomics guarantee the safety of privatising operations.

access highly contended memory, execute irreversible operations, demand run
once semantics or perform expensive computations, then on-occasion pessimistic
concurrency control (gatomic) may be preferable [26].

To summarise, we make the following contributions:

– We give a small-step operational semantics (Sect. 2) for an object-oriented
programming language that supports atomics and gatomics.

– We define legal schedules of reads and writes issued by atomics and gatomics,
first in the form of sequential consistency (SC, Sect. 2.5), and then as part
of a modified definition of the Java memory model (JMM, Sect.3).

– We show that the actions issued by conflicting atomics and gatomics are
serialisable both under SC and the JMM. (Sects. 2.6 and 3.)

2 Programming Model

2.1 Programming Language

We present a minimal object-oriented language that supports atomics and gatomics
for mediating accesses to memory locations. Atomic and gatomic regions of code
can be defined at the granularity of a method or be explicitly scoped.

prog ::= cdecl∗ (t v)∗ (S || . . . || S)
cdecl ::= class cn { (t v)∗ meth∗ }
t ::= cn | primitive
meth ::= [atomic | gatomic] t m((t p)∗) {C}
S ::= (t v)∗ C
C ::= v := x | v.f := x | v.m(p∗) | atomic{C} | gatomic{C} | C;C

Where v, p and x range over variables, t over types and f over the fields defined
by the variable’s type. Notable features of our language include the use of atom-
ics (atomic{C}) and gatomics (gatomic{C}) as commands. Classes, methods and
method calls are also permitted. Methods can be defined to execute under an
atomic, gatomic or non-synchronised semantics. For simplicity of presentation,
the above language does not include conditional commands and while loops. Con-
ditional commands cause no extra difficulty in our semantic definitions. While
loops can be dealt with via their corresponding tail-recursive methods.

2.2 Program Text Preprocessing

Each invocation of an atomic or gatomic method is wrapped with the synchro-
nisation action (SA, either an atomic or gatomic) defined by the method’s sig-
nature. A method invocation v.m(p∗) is transformed into atomic{v.m(p∗)} if m
is defined as an atomic method. Similarly, the invocation v.m(p∗) is transformed
into gatomic{v.m(p∗)} if m is defined to execute under a gatomic semantics.

Nested SAs are flattened by applying the following sequence of phases:

1. Discovery: determines the strongest semantics used within the nested SAs.
The semantics afforded by a gatomic are stronger than that of an atomic.

2. Semantic Boosting: uses the semantics yielded by the discovery phase as the
new semantics of the outermost SA.

3. Flattening: removes the nested SA semantics from the outermost SA result-
ing in a single monolithic SA.

To illustrate the use of these phases we now apply them to the command
atomic{ci; gatomic{cj}}:

– Discovery: the gatomic is selected as its semantics are stronger than that
afforded by an atomic.

– Semantic Boosting: the outermost SA (atomic) adopts the semantics identi-
fied by the discovery phase resulting in gatomic{ci; gatomic{cj}}.

– Flattening: the nested gatomic is removed resulting in gatomic{ci; cj}.

The last stage of our preprocessing is to associate a unique identifier, id, with
each instance of an atomic and gatomic.

2.3 Preliminaries

State Our model of state is defined as follows:

s ∈ Stores
def
= Variables→ Addresses

h ∈ Heaps
def
= Addresses ⇀fin ObjVal

Variables
def
= {x, y, ...} Addresses

def
= {0, 1, 2, ...}

(s, h) ∈ States
def
= Stores× Heaps

Note that s is a function that maps a variable to its address on the heap. A
heap h is a partial function that maps an address to an object value cn[f1 7→
ν1, . . . , fn 7→ νn] where cn is the type of the object and ν1 . . . νn are the values of
the fields f1 . . . fn. We use h(s(x)).f to access the value of a field f of the object
pointed-to by x. We often use σ or δ to denote a state, (s, h).

Configurations Given a parallel composition C1‖ . . . ‖Cn, the machine config-
uration P is of the form 〈T1‖ . . . ‖Tn, σ, Γ 〉, where T1, .., Tn are thread configu-
rations, σ is the program state, and Γ records all current instances of SAs.

A thread configuration T is of the form 〈τ, Cτ , sτ , δ〉, where τ∈T ={1, .., n}
is the thread identifier, Cτ is the command to execute, sτ is the thread’s store
mapping, and δ is a copy of the program state. δ entails the thread store and
the program state.

Every active SA instance is associated with some metadata of the form
(beg, cmt, rs,ws, ds, type), where beg and cmt are time stamps representing be-
gin and commit times, rs and ws are read and write sets (sets of addresses),

ds
def
= rs ∪ ws is the dataset, and type is the type of the SA instance, defined as

Ψ if the SA is a gatomic or undefined (⊥) otherwise. Each component of an SA
entry is initially ⊥. Γ in the program configuration is a mapping that takes a
thread identifier and an SA label and returns the metadata associated with the
specified SA instance. Metadata facilitates the safe execution of SAs; specifically,
the checking of which SAs conflict and which do not. Given two distinct SAs
x and y, x and y conflict if x’s write set (ws) intersected with y’s dataset (ds)
yields a non-empty set.

Transition relations We model the execution of each thread command us-
ing the following transition relation: T, σ, Γ

λ−→ T ′, σ′, Γ ′, as in Fig. 3. To fa-
cilitate the presentation, we also define a set of auxiliary rules of the form

C, σ, γR, γW
λR | λW−−−−−→ C ′, σ′, γ′R,

′ γ′W in Fig. 2. Where γR and γW are incremen-
tally accumulated read and write sets. A transition in the auxiliary rules gener-
ates a sequence of reads (λR) and/or writes (λW). An action that is generated
due to a reduction in either the thread or auxiliary rules is termed a fine-grained
action. λ is used as a metavariable that ranges over fine-grained actions. We
model the execution of a parallel composition (Fig. 5) using the following transi-

tion relation P
‖mv∈I∪MΛmv−−−−−−−−→ P ′, where P, P ′ are of the form 〈T1‖ . . . ‖Tn, σ, Γ 〉 as

defined earlier. The label ‖mv∈I∪M Λmv denotes that during the transition from
P to P ′, all actions Λmv (mv∈I ∪M) take place concurrently in some arbitrary
order. Each action Λmv entails a sequence of finer-grained actions, λ, either of
the form tbeg_λ∗_tcmt (for atomics) or gbeg_λ∗_gcmt (for gatomics). Where
λ∗ is a sequence of reads and/or writes.

2.4 Thread Command Semantics

We extend the commands of our language to include the following intermediate
constructs to facilitate the presentation of the semantics:

C ::= . . . | ablk(C, C) | gablk(C) | ret({v1, . . . , vn}, C)

[ASSIGN]
s′ = s[v 7→s(x)]

γ′R = γR ∪ {x} γ′W = γW ∪ {v}
v:=x, (s, h), γR, γW

λRλW−−−→ ε, (s′, h), γ′R, γ
′
W

[FLD UPDATE]
h′ = h[s(v) 7→ (h(s(v))[f 7→s(x)])]
γ′R = γR ∪ {x} γ′W = γW ∪ {s(v)}

v.f :=x, (s, h), γR, γW
λRλW−−−→ ε, (s, h′), γ′R, γ

′
W

[INV1]
t mn(t1 p1, .., tn pn) {c} ∈ methods(cn)

s0 = [this7→sτ (u0), p1 7→sτ (u1), .., pn 7→sτ (un)] s′ = push frame(s0, s)
γ′R = γR ∪ {u1, . . . , un}

u0.mn(u1..un), (s, h), γR, γW
λR1...λRn−−−−−−→ ret({this, p1..pn}, c), (s′, h), γ′R, γW

[INV2]

c, (s, h), γR, γW
λ−→ c′, (s′, h′), γ′R, γ

′
W

ret(V, c), (s, h), γR, γW
λ−→ ret(V, c′), (s′, h′), γ′R, γ

′
W

[INV3]
s′ = pop frame(V, s)

ret(V, ε), (s, h), γR, γW
ε−→ ε, (s′, h), γR, γW

[SEQ1]

c1, (s, h), γR, γW
λ−→ c′1, (s′, h′), γ′R, γ

′
W

c1; c2, (s, h), γR, γW
λ−→ c′1; c2, (s′, h′), γ′R, γ

′
W

[SEQ2]

c1, (s, h), γR, γW
λ−→ ε, (s′, h′), γ′R, γ

′
W

c1; c2, (s, h), γR, γW
λ−→ c2, (s′, h′), γ′R, γ

′
W

Fig. 2. Auxiliary Sequential Rules instrumented with Datasets.

where ablk(C, C) and gablk(C) are intermediate representations of atomic{C}
and resp. gatomic{C} within the program source text. The second component
of ablk is the backup program command and is used as the point to rollback to
should the atomic abort. The construct ret({p1, . . . , pn}, C) is used as a mark
when executing methods.

The rest of this section covers the operational semantics of our language.
During our commentary we give only brief descriptions of the auxiliary functions
our rules reference. We refer the reader to Fig. 4 for their formal definitions.

Auxiliary rules [ASSIGN] and [FLD UPDATE] (Fig. 2) are employed when ex-
ecuting either an assignment or field update within an SA. Each command reg-
isters the memory locations it reads and writes and stores them in its read (γR)
and/or resp. write (γW) set. The read and write sets of a command aid conflict
detection of atomics and gatomics (see Sects. 2.4 and 2.4). The rules [INV1],
[INV2] and [INV3] facilitate method calls. [INV1] is applied when invoking a
method. Note that the store s is viewed as a “stackable” mapping, where a vari-
able p may occur several times, and s(p) always refers to the value of the variables
p that were pushed in most recently. We use the operation push frame(s0, s) to
“push” the frame s0 to s, push frame([p7→ν], s)(p) = ν. [INV2] is applied when
executing the constituent commands of a method and [INV3] is applied when a
method completes. In [INV3] pop frame(V, s) is used to “pop out” the variables

[ATOMIC BEG]
δ = (sτ ∪ σ.s, σ.h)

Γ ′ = Γ [(τ, id)7→(Ω,⊥, ∅, ∅, ∅,⊥)]

〈τ, id:atomic{c}, sτ ,⊥〉, σ, Γ
tbeg−−→

〈τ, id:ablk(c, id:atomic{c}), sτ , δ〉, σ, Γ ′

[ATOMIC UPDATE]
γR = Γ (τ, id)(rs) γW = Γ (τ, id)(ws)

c, δ, γR, γW
λ−→ c′, δ′, γ′R, γ

′
W

Γ ′ = Γ [(τ, id)7→(Γ (τ, id)[rs7→γ′R,ws7→γ′W])]

〈τ, id:ablk(c, c1), sτ , δ〉, σ, Γ
λ−→

〈τ, id:ablk(c′, c1), sτ , δ
′〉, σ, Γ ′

[ATOMIC CMT]
∀τ ′ ∈ T .¬conflict(τ, τ ′, Γ)

(s′τ , σ
′) = merge upd(δ, sτ , σ)

Γ ′ = Γ [(τ, id) 7→Γ (τ, id)[cmt 7→Ω]]

〈τ, id:ablk(ε, c1), sτ , δ〉, σ, Γ
tcmt−−→

〈τ, ε, s′τ ,⊥〉, σ′, Γ ′

[GATOMIC BEG]
∀τ ′ ∈ T .¬ga conflict(τ, τ ′, Γ ′)

δ = (sτ ∪ σ.s, σ.h)
γR = reads(c, δ) γW = writes(c, δ)

Γ ′ = Γ [(τ, id) 7→(Ω,⊥, γR, γW , γR ∪ γW , Ψ)]

〈τ, id:gatomic{c}, sτ ,⊥〉, σ, Γ
gbeg−−→

〈τ, id:gablk(c), sτ , δ〉, σ, Γ ′

[ATOMIC ABT]
∃τ ′ ∈ T .conflict(τ, τ ′, Γ)

〈τ, id:ablk(ε, c′), sτ , δ〉, σ, Γ
tabt−−→

〈τ, c′, sτ ,⊥〉, σ, Γ\{(τ, id)}

[GATOMIC UPDATE]

c, δ, ,
λ−→ c′, δ′, ,

〈τ, id:gablk(c), sτ , δ〉, σ, Γ
λ−→

〈τ, id:gablk(c′), sτ , δ
′〉, σ, Γ

[GATOMIC CMT]
(s′τ , σ

′) = merge upd(δ, sτ , σ)
Γ ′ = Γ [(τ, id) 7→(Γ (τ, id)[cmt 7→Ω])]

〈τ, id:gablk(ε), sτ , δ〉, σ, Γ
gcmt−−→

〈τ, ε, s′τ ,⊥〉, σ′, Γ ′

[GATOMIC BLOCK]
γR = reads(c, (sτ ∪ σ.s, σ.h))
γW = writes(c, (sτ ∪ σ.s, σ.h))

Γ = Γ [(τ, id) 7→(Ω,⊥, γR, γW , γR ∪ γW , Ψ)]

∃τ ′∈T .ga conflict(τ, τ ′, Γ)

〈τ, id:gatomic{c}, sτ ,⊥〉, σ, Γ
blk−→

〈τ, id:gatomic{c}, sτ ,⊥〉, σ, Γ

Fig. 3. Synchronisation Action Command Semantics.

in V from the stack s, and s[p7→ν] changes the value of the most recent p in stack
s to ν. The ε in [SEQ2] denotes an empty command.

Transactions [ATOMIC BEG] (Fig. 3) is applied when an atomic{C} is encoun-
tered in the source text. An atomic is relatively simple to setup: a local copy of
the state, δ, is made which comprises of a store heap pair where the store entails
both the thread-local and global store mappings and some default metadata is
associated with the SA instance. We use Ω as a meta-timestamp that returns
the current time. [ATOMIC UPDATE] is applied for each constituent command
within an atomic. When all the constituent commands of an atomic have been
executed either [ATOMIC CMT] or [ATOMIC ABT] is applied. [ATOMIC CMT]
applies should the dataset of the atomic not conflict with any other running or
recently committed SA. Committing an atomic entails the merging of its effect

merge(σ1, σ2)
def
= (mergefun(σ1.s, σ2.s),mergefun(σ1.h, σ2.h))

mergefun(f1, f2)(x)
def
=

{
f2(x) x ∈ dom(f2)
f1(x) x ∈ dom(f1)\dom(f2)

merge sets(σ, {σ1, .., σn}) def
=

{
merge(σ, σ1) n = 1
merge sets(merge(σ, σ1), {σ2, .., σn}) n≥2

merge upd((s1, h1), s, σ)
def
= (mergefun(s ∪ σ.s, s1),mergefun(σ.h, h1))

conflict(τ1, τ2, Γ)
def
= τ1 6=τ2 ∧ ∃id1, id2 ∈ Labels.Γ (τ1, id1).ws ∩ Γ (τ2, id2).ds 6= ∅
∧ (Γ (τ1, id1).beg≤Γ (τ2, id2).cmt≤Ω

∨ Γ (τ2, id2).type = Ψ ∧ Γ (τ2, id2).cmt = ⊥)

ga conflict(τ1, τ2, Γ)
def
= τ1 6=τ2 ∧ ∃id1, id2 ∈ Labels.Γ (τ1, id1).type = Ψ
∧ Γ (τ2, id2).type = Ψ
∧ Γ (τ1, id1).ws ∩ Γ (τ2, id2).ds 6= ∅ ∧ Γ (τ2, id2).cmt = ⊥

Ti, σ, Γ (
λ1−→ ◦ λ2−→) T′i, σ

′, Γ ′
def
= ∃T′′i , σ

′′, Γ ′′ · Ti, σ, Γ λ1−→ T′′i , σ
′′, Γ ′′

∧ T′′i , σ
′′, Γ ′′

λ2−→ T′i, σ
′, Γ ′

(
λ−→)∗

def
=
⋃
r≥1

(
λ−→)r (

λ−→)r+1 def
= (

λ−→) ◦ (
λ−→)r

merge sa(Γ, {Γ 1, .., Γn}) def
= Γ ∪

⋃
1≤i≤n

(Γ i−Γ)

Fig. 4. Auxiliary Definitions.

(δ) into sτ and σ via the function merge upd, and the updating of its SA entry.
The dataset of an atomic is validated only when all its constituent commands
have been executed. [ATOMIC ABT] is applied if the atomic’s dataset has been
invalidated due to a conflict with another running or recently committed SA.
Aborting an atomic is trivial: its SA entry is removed from Γ and the program
counter of τ is set to c′. The predicate conflict in Fig. 4 determines whether or
not an atomic conflicts with another SA. Informally, if a conflicting atomic or
gatomic committed after or at the same time as the atomic under investigation
began then the atomic is aborted.

Guaranteed Transactions [GATOMIC BEG] is applied when gatomic{C} is en-
countered in the program source text. Due to the run once semantics of gatomics
[GATOMIC BEG] performs a check to see if the gatomic conflicts with any other
currently running gatomic. Should a conflict exist then the gatomic cannot be
immediately scheduled to run and [GATOMIC BLOCK] is applied; otherwise, it
begins execution. The functions reads and writes return the transitive closure of
all locations reachable by the objects referenced within the gatomic that are
read and resp. written. We resort to existing analyses (e.g., [5, 15, 20, 25])
to compute this information. The predicate ga conflict (Fig. 4) encapsulates
the pessimistic scheduling check that gatomics entail. Conceptually gatomics

use two-phase locking: locks associated with the referenced objects within the
gatomic are acquired before entering the gatomic and only released upon the
completion of the gatomic. The temporary mapping Γ in [GATOMIC BLOCK]
is used to determine if the gatomic conflicts with any other running gatomic.
[GATOMIC UPDATE] is applied per each constituent command executed by the
gatomic. The commands that a gatomic executes are non-instrumented versions
of the commands presented in Fig. 2. [GATOMIC CMT] is applied when the
gatomic has executed all of its constituent commands.

Note that in Fig. 3, we present only semantics for atomics and gatomics, and
ignore semantics for other commands (which are straightforward to define).

1

2

3

4

5

6

7

8 9

existing analyses (e.g., [5, 17, 22, 27]) to compute a safe dataset for a gatomic.
The predicate ga conflict (Fig. 4) encapsulates the pessimistic scheduling check
that gatomics entail. Conceptually gatomics use two-phase locking: locks associ-
ated with the referenced objects within the gatomic are acquired before entering
the gatomic and only released upon the completion of the gatomic. The tempo-
rary mapping � in [GATOMIC BLOCK] is used to determine if the gatomic con-
flicts with any other running gatomic. [GATOMIC UPDATE] is applied per each
constituent command executed by the gatomic. The commands that a gatomic
executes are non-instrumented versions of the commands presented in Fig. 2.
[GATOMIC CMT] is applied when the gatomic has executed all of its constituent
commands.

Note that in Fig. 3, we present only semantics for atomics and gatomics, and
ignore semantics for other commands (which are straightforward to define).

[PCOMP]
T = I [J [K [M I [M 6= ;

8i 2 I · Ti=hi, idi:gatomic{ci}; c0i, si,?i ^ T0
i=hi, c0i, s0i,?i ^ T00

i =hi, idi:gablk(✏); c0i, si, �ii
8j 2 J · Tj=hj, idj:gatomic{cj}; c0j , sj ,?i

8k 2 K · Tk=hk, idk:atomic{ck}; c0k, sk,?i ^ T00
k=hk, idk:ablk(✏, ck); c0k, sk, �ki

8m 2 M · Tm=hm, idm:atomic{cm}; c0m, sm,?i ^ T0
m = hm, c0m, s0m,?i

^ T00
m = hm, idm:ablk(✏, cm); c0m, sm, �mi

8i, j 2 I · i 6=j) � (i, idi)(ws) \ � (j, idj)(ds) = ;
8j 2 J · (9i 2 I · � (i, idi)(ws) \ � (j, idj)(ds) 6= ;)

8i 2 I · Ti, �, �
gbeg��! �(��!)⇤ T00

i , �0
i, �

0
i

gcmt��! T0
i, �i, �i ^ ⇤i = gbeg_�⇤_gcmt

8k 2 K · Tk, �, �
tbeg��! �(��!)⇤ T00

k , �, � 0
k

tabt��! Tk, �, �

8m 2 M · Tm, �, �
tbeg��! �(��!)⇤ T00

m, �, � 0
m

tcmt��! T0
m, �m, �m

^ ⇤m = tbeg_�⇤_tcmt
8k 2 K · (9i 2 I.� 0

k(k, idk)(ws) \ � (i, idi)(ds) 6= ;
_ 9m 2 M.� 0

k(k, idk)(ws) \ � 0
m(m, idm)(ds) 6= ;)

8m 2 M · (8i 2 I.� 0
m(m, idm)(ws) \ � (i, idi)(ds) = ; ^

8m0 2 M\{m}.¬9idm0 .� 0
m(m, idm)(ws) \ � 0

m0(m0, idm0)(ds) 6= ;)
�0 = merge sets(�, {�⌧ | ⌧ 2 I [M}) � 0 = merge sa(�, {�⌧ | ⌧ 2 I [M})

h. . . ||Ti||..||Tj ||..||Tk||..||Tm||.., �, � i kmv2I[M⇤mv��������! h..||T0
i||..||Tj ||..||Tk||..||T0

m||.., �0, � 0i

Fig. 5. Big-Step Program Move Semantics.

2.5 Program Move Semantics

The orchestration of concurrently executing threads is handled by the rule
[PCOMP] (Fig. 6). [PCOMP] caters for the most interesting scenario where each

Fig. 5. Big-Step Program Move Semantics.

2.5 Program Move Semantics

The orchestration of concurrently executing threads is handled by the rule
[PCOMP] (Fig. 5). [PCOMP] caters for the most interesting scenario where each
thread has an atomic or gatomic to run (Other scenarios are not included). It
distinguishes the set of threads which make progress in their respective transition
systems (moving threads) from those that do not (non-moving threads). Moving
threads are executing either atomics that are to be committed or gatomics that
are safe to run. To facilitate our reasoning we assume the set of concurrently
executing threads T are split into four sets (Label 1 in Fig. 5):

– I is the set of threads that are executing code under a gatomic semantics.
Every thread in I has satisfied the predicate ¬ga conflict for its respective
gatomic.

– J represents the set of threads that are currently blocking due to their resp.
gatomics conflicting with some threads already running in I.

– M is the set of threads that can commit their atomics.
– K is the set of threads whose atomics are to be aborted.

Label 2 in Fig. 5 defines the configurations that each of the partitioned
threads in I, J,M and K move through. Label 3 requires that each of the
threads in I running a gatomic do not conflict w.r.t. each other. Label 4 denotes
that the gatomics in threads J are currently blocking due to them conflicting
with some threads currently running in I. Label 5 illustrates the transitions
undertaken by each of the threads in I, J,M and K. Threads in I apply an
instance of [GATOMIC BEG], a number of [GATOMIC UPDATE] instances and
an instance of [GATOMIC CMT]. The blocking threads in J apply an instance
of [GATOMIC BLOCK] and as such do not make any progress in their resp.
transition systems. Threads in K and M differ only in their final reduction:
threads in K apply instances of [ATOMIC ABT] and those in M apply instances
of [ATOMIC CMT]. Label 6 states that the threads in K are due to abort if they
conflict with either a gatomic or a committing atomic. Label 7 requires that the
committing atomics do not conflict with any gatomics nor any other committing
atomic. Moving threads merge their entailed effects with the program state via
merge sets (Label 8) and also merge the updates made to their respective SA
entries courtesy of merge sa (Label 9).

Each SA being executed by the threads in I, J,M and K generates a sequence
of fine grained actions, λs, due to the reductions taken in their resp. transition
systems. The sequence of fine grained actions generated by each SA form an
action, Λ. Λmv is used to denote the actions associated with the SAs being
executed by the moving threads in I and M . The fine grained actions (λs) of
the actions in Λmv can be arbitrarily concurrently interleaved due to the SAs
executed by threads in I and M not conflicting. This interleaving is denoted in
the reduction of [PCOMP]. The resulting interleaving is governed by the same
restrictions imposed by sequential consistency (SC) [17].

2.6 Properties

We show that the semantics of atomics and gatomics given in Figs. 3 and 5 are
serialisable [24] and that correctly isolated programs are data-race-free.

Definition 1. Ordered-Before (<). Defined over actions (Λs). Total ordering.
If each fine grained action λi of Λi takes effect before the first fine grained action
λj of Λj, then Λi < Λj.

Intuitively if Λi < Λj then we say that the effect of Λi serialises-before Λj .
The ordered-before relation is constructed during the reduction of [PCOMP]. We
show for any given execution that conflicting atomics and gatomics are serialised.

Theorem 1. There exists a total (serialisable) order over conflicting atomics.

Proof. Let Λi and Λj be the actions associated with the conflicting atomics Ti
and resp. Tj . By definition of conflict we apply instances of [ATOMIC CMT] and
resp. [ATOMIC ABT]. Therefore, either Λi < Λj ∨ Λj < Λi.

Theorem 2. There exists a total (serialisable) order over conflicting gatomics.

Proof. Let Λi and Λj be the actions associated with the conflicting gatomics Ti
and resp. Tj . By definition of ga conflict we apply instances of [GATOMIC BEG]
and resp. [GATOMIC BLOCK]. Therefore, either Λi < Λj ∨ Λj < Λi.

Theorem 3. There exists a total (serialisable) order over conflicting SAs of
mixed type.

Proof. Let Λi and Λj be the actions associated with the conflicting atomic Ti and
resp. gatomic Tj . By definition of conflict we apply instances of [ATOMIC ABT]
and resp. [GATOMIC CMT]. Therefore, Λj < Λi.

Intuitively gatomics have a serialisation priority over transactions due to a
gatomic guaranteeing run once semantics.

A correctly isolated program is one that encapsulates every access to a mem-
ory region that is accessed by multiple threads with either an atomic or gatomic.

Theorem 4. Correctly isolated programs are data-race-free.

Proof. Follows from Thms. 1, 2 and 3.

3 Java Memory Model

In Sect. 2.5 we presented actions, λs, and described via [PCOMP] (Fig. 5) how
these actions were permitted to be interleaved. For each execution this inter-
leaving forms a schedule. In the literature a schedule is governed by a memory
model [2]. Most importantly a memory model specifies the set of values a read
may observe. The schedules of actions constructed in Fig. 5 were due to SC.
Under SC actions from all threads appear in a totally ordered sequence, with
each action respecting the program order of its issuing thread. The goal of this
section is to define legal schedules of actions in terms of the Java memory model
(JMM) [19]. In particular, we wish to show how happens-before relationships are
established between atomics and gatomics. Having defined our SAs under the
JMM we show that they satisfy the properties given in Sect. 2.6.

3.1 Correctly Synchronised Programs

The JMM takes a rather simple approach when defining what constitutes a
correctly synchronised program, informally: any program that is data-race-free
(DRF) [3] is guaranteed to observe an SC semantics. Before describing what it
means for a program to be DRF we must cover the terminology outlined by the
JMM.

– Conflicting Accesses: a read or write to a variable x is an access of x.
Two accesses to x are conflicting if at least one of the accesses is a write.

– Synchronisation Actions: includes locks, unlocks, reads of volatile vari-
ables and writes to volatile variables.

– Program Order: the actions issued by a thread τ form a total ordering
known as the program order of τ .

– Synchronisation Order: every execution is associated with a synchronisa-
tion order which is a total ordering over all SAs. Only synchronisation orders
that are consistent with program order can be considered. For example, a
read r of a volatile field v must observe the value written to v by the write
w such that w occurs before r in the synchronisation order, w

so−→ r. Every
execution is associated with a synchronisation order.

– Synchronises-With Order: an unlock action a on a monitorM “synchronises-
with” a subsequent, as defined by the synchronisation order, lock action b
on M , a

sw−−→ b.
sw−−→ is a partial order. Actions within the synchronises-with

order can be issued by different threads.

– Happens-Before Order: is the transitive closure of the program order and
synchronises-with order. An action a “happens-before” [18] another action b

if a occurs before b in the happens-before ordering, written a
hb−→ b.

– Data Race: two accesses a and b to a variable v form a data race if a
and b conflict, are issued by separate threads and are not ordered by the
happens-before relation.

– Data-Race-Free Program: a program is DRF if and only if all sequentially
consistent executions of the program are free of data races.

The happens-before relation in the JMM defines the set of values a read can
observe. Establishing edges in this relation requires the use of an SA. In Java such
actions are generated via the use of either volatile variables or synchronized
methods/blocks. As defined by the synchronises-with order there exists a pair of
matching unlock and lock actions on the same monitor object M . Conceptually
every monitor M is associated with an unlock action on M before any actions of a
program are executed. Before we proceed further we must update the definitions
of synchronisation actions and the synchronises-with order to be the following:

– Synchronisation Actions: includes the beginning of an atomic and gatomic
(tbeg and resp. gbeg) and the end of an atomic and gatomic (tcmt and resp.
gcmt).

– Synchronises-With Order: a tcmt (and resp. gcmt) action a on a dataset
da “synchronises-with” a subsequent, as defined by the synchronisation order,
tbeg (and resp. gbeg) action b on a dataset db when da ∩ db 6= ∅, written

a
sw−−→ b.

Our begin and end actions for atomics and gatomics are abstractions. We
give their semantics in the form of the JMMs acquire and release actions in the
next section.

3.2 Execution Semantics

Actions An action A = 〈τ, k, v, u〉 where τ is the thread performing the action,
k is the kind of action being performed (discussed later), v is the variable involved
in the action and u ∈ Integers is the unique identifier of the action. The kind k
of an action can be one of the following: (i) write (W); (ii) read (R); (iii) acquire
(Acq); or (iv) release (Rel). We do not cater for volatiles. To keep things simple
we permit a write to be performed directly on a field, e.g. 〈τ,W, v.f, 1〉. The
semantics of tcmt, gbeg and gcmt are defined as follows:

tcmt
def
= Acq `i . . .Acq `n Rel `n . . .Rel `i

gbeg
def
= Acq `i . . .Acq `n

gcmt
def
= Rel `n . . .Rel `i

Where each ` can be a variable or an object value and forms the dataset
of an atomic or gatomic. We require that the contention manager has made
this schedule safe and that the acquisition and release orders are topologically
sorted as in McCloskey et al. [21].4 blk is ignored (it is a sink action) and tbeg
simply acts as a mark to delimit the beginning of an atomic’s constituent actions.
tabt does not feature in any execution as its subsequence of actions will not be
observed. A valid sequence of actions for atomics and gatomics is a composition
of the above with a number of reads and writes:

tbeg (W | R)∗ tcmt gbeg (W | R)∗ gcmt

Note that these sequences correspond to those of the moving threads I and
M in Fig. 5.

Executions An execution E = 〈P,A, po−→, so−→,Ws,Vs,
sw−−→, hb−→〉 where P is as

defined in Sect. 2, A is a set of actions,
po−→ is the program order of the actions

performed by each τ ∈ T ,
so−→ is the synchronisation order, Ws is a write-seen

function, Vs is a value-seen function and
sw−−→ and

hb−→ are as defined previously.

4 Related Work

Shavit and Touitou [27] introduced software transactional memory (STM). The
isolation semantics afforded by an STM are either weak or strong [6, 7, 11]. Liter-
ature on the semantics of STM includes that by Abadi et al. [1] which is based on
the automatic mutual exclusion (AME) [14] concurrent programming language.
Koskinen et al. [16] have also studied the semantics of STM but their work does
not entail the mixing of pessimistic and optimistic concurrency control.

4 This model is used only to illustrate a projection onto the JMMs existing SAs.

Ziarek et al. [32] described a dynamic approach for selecting a stronger se-
mantics when an atomic attempted to execute an operation which seems (deter-
mined by a magic analysis) to require stronger guarantees than that afforded by
an atomic. Unfortunately, such a semantics reverts to using programmer speci-
fied lock invariants which are error prone. Smaragdakis et al. [28] presented a set
of language extensions to temporarily “suspend” an atomic’s isolation in order to
support irreversible operations, however they rely heavily on the specification of
isolation invariants, which are again, error prone. Privatisation and publication
[30] can be used to emulate a stronger semantics within STM but requires the
programmer to correctly transfer ownership of memory regions between threads.

Ni et al. [23] championed obstinate transactions but are a product of a prior
abort. Welc et al. [31] use single owner read locks to transition to a guaranteed
semantics but permit only a single such atomic to run at any given time. Sonmez
et al. [29] present a model built on Haskell STM that turns atomics that access
“hot” regions of memory into pessimistic atomics, however this approach again
is dynamic and does not afford dataset guarantees. Autolocker [21] presents
a model of pessimistic atomics by using a type system that uses programmer
specified lock protection annotations to convert atomics into lock-based equiva-
lents statically. Recent literature such as that by McCloskey et al. [21], Ni et al.
[23], Shavit and Matveev [26] and Welc et al. [31] have, via empirical evidence,
more than justified not only the practical feasibility of pessimistic concurrency
control for STM but also its importance in simplifying the programming model.

Adding atomics to a language such as Java impacts the underlying mem-
ory model [2] as outlined by Ziarek et al. [32] and Grossman et al. [9]. Menon
et al. [22] provide a number of properties that memory models must take into
consideration for supporting atomics, such as the Java memory model (JMM)
[19].

5 Summary

We have presented a small-step operational semantics for a programming lan-
guage that supports compositional mixed mode concurrency control for trans-
actional programs. Our language partitions transactions into two types: atomics
(optimistic) and gatomics (pessimistic). Gatomics guarantee run once semantics
and the safe use of the privatisation and publication idioms. We also showed
that the reads and writes issued by atomics and gatomics are serialisable under
both a sequential consistency and Java memory model semantics.

Acknowledgment

Granville Barnett is supported by EPSRC Doctoral Training Award. Shengchao
Qin is supported in part by EPSRC project EP/G042322.

References

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transactional
memory and automatic mutual exclusion. Principles of Programming Lan-
guages, 2008.

[2] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. Computer, 1996.

[3] Sarita V. Adve and Mark D. Hill. Weak ordering – a new definition. Inter-
national Symposium on Computer Architecture, 1990.

[4] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency control
performance modeling: alternatives and implications. ACM Trans. Database
Syst., 1987.

[5] Lars Ole Andersen. Program analysis and specialization for the c program-
ming language. Technical report, University of Copenhagen, 1994.

[6] Colin Blundell, E Christopher, Lewis Milo, and M. K. Martin. Decon-
structing transactional semantics: The subtleties of atomicity. Workshop
on Duplicating, Deconstructing, and Debunking, 2005.

[7] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin.
Making the fast case common and the uncommon case simple in unbounded
transactional memory. International Symposium on Computer Architec-
ture, 2007.

[8] Jim Gray. The transaction concept: virtues and limitations. Very Large
Data Bases, 1981.

[9] Dan Grossman, Jeremy Manson, and William Pugh. What do high-level
memory models mean for transactions? Memory System Performance and
Correctness, 2006.

[10] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. Principles and Practice of Parallel Pro-
gramming, 2005.

[11] Tim Harris, James Larus, and Ravi Rajwar. Transactional memory, 2nd
edition. 2010.

[12] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III.
Software transactional memory for dynamic-sized data structures. Princi-
ples of Distributed Computing, 2003.

[13] Rich Hickey. The clojure programming language. Dynamic Languages Sym-
posium, 2008.

[14] Michael Isard and Andrew Birrell. Automatic mutual exclusion. USENIX,
2007.

[15] James Jenista and Brian Demsky. Disjointness analysis for java-like lan-
guages. Technical report, University of California, Irvine, 2009.

[16] Eric Koskinen, Matthew Parkinson, and Maurice Herlihy. Coarse-grained
transactions. Principles of Programming Languages, 2010.

[17] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. Transactions on Computers, 1979.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 1978.

[19] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory
model. Principles of Programming Languages, 2005.

[20] Mark Marron, Mario Méndez-Lojo, Manuel Hermenegildo, Darko Ste-
fanovic, and Deepak Kapur. Sharing analysis of arrays, collections, and
recursive structures. Program Analysis for Software Tools and Engineering,
2008.

[21] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: syn-
chronization inference for atomic sections. Principles of Programming Lan-
guages, 2006.

[22] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-
Tabatabai, Richard L. Hudson, Bratin Saha, and Adam Welc. Practical
weak-atomicity semantics for java stm. Symposium on Parallelism in Algo-
rithms and Architectures, 2008.

[23] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkow-
its, James Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy,
Jeffrey Olivier, Serguei Preis, Bratin Saha, Ady Tal, and Xinmin Tian.
Design and implementation of transactional constructs for c/c++. Object-
Oriented Programming Systems Languages and Applications, 2008.

[24] Christos H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 1979.

[25] William Pugh and David Wonnacott. Constraint-based array dependence
analysis. Transactions on Programming Languages and Systems, 1998.

[26] Nir Shavit and Alex Matveev. Towards a fully pessimistic stm model. Trans-
actional Computing, 2012.

[27] Nir Shavit and Dan Touitou. Software transactional memory. Principles of
Distributed Computing, 1995.

[28] Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young.
Transactions with isolation and cooperation. Object-Oriented Programming
Systems Languages and Applications, 2007.

[29] Nehir Sonmez, Tim Harris, Adrian Cristal, Osman S. Unsal, and Mateo
Valero. Taking the heat off transactions: Dynamic selection of pessimistic
concurrency control. International Symposium on Parallel and Distributed
Processing, 2009.

[30] Michael F. Spear, Virendra J. Marathe, Luke Daless, and Michael L. Scott.
Privatization techniques for software transactional memory. Principles of
Distributed Computing, 2007.

[31] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable trans-
actions and their applications. Symposium on Parallelism in Algorithms
and Architectures, 2008.

[32] Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon, Tatiana
Shpeisman, and Suresh Jagannathan. A uniform transactional execution
environment for java. European Conference on Object-Oriented Program-
ming, 2008.

