
Automated Verification of Shape, Size and Bag Properties

Wei-Ngan Chin1,2 Cristina David1 Huu Hai Nguyen2 Shengchao Qin3

1 Department of Computer Science, National University of Singapore
2 Computer Science Programme, Singapore-MIT Alliance

3 Department of Computer Science, Durham University
{chinwn,davidcri,nguyenh2}@comp.nus.edu.sg shengchao.qin@durham.ac.uk

Abstract

In recent years, separation logic has emerged as a con-
tender for formal reasoning of heap-manipulating impera-
tive programs. Recent works have focused on specialised
provers that are mostly based on fixed sets of predicates. To
improve expressivity, we have proposed a prover that can
automatically handle user-defined predicates. These shape
predicates allow programmers to describe a wide range of
data structures with their associated size properties. In the
current work, we shall enhance this prover by providing
support for a new type of constraints, namely bag (multi-
set) constraints. With this extension, we can capture the
reachable nodes (or values) inside a heap predicate as a
bag constraint. Consequently, we are able to prove proper-
ties about the actual values stored inside a data structure.

1 Introduction

Separation logic supports reasoning about shared muta-
ble data structures. Therefore, specification of memory op-
erations with advanced pointer usage is enabled. While the
foundations of separation logic have been laid in seminal
papers by Reynolds [23] and Isthiaq and O’Hearn [11], new
automated reasoning tools based on separation logic, such
as [2, 9], are beginning to appear. Several recent works,
such as [1, 8], have developed specialised solvers that work
for a fixed set of predicates (e.g. lseg). The level of expres-
sivity for an automated verification system was raised by
our previous work [20] where we support automated rea-
soning of user-defined predicates. The main goal of our
current paper is to enhance the prover proposed in [20] by
providing support for bag constraints. We make the follow-
ing technical contributions towards this overall goal :

• We provide a shape predicate specification mechanism
that can capture a wide range of data structures to-
gether with size and bag properties, such as various

height-balanced trees, priority heap, sorted list, etc.
Moreover, we provide a mechanism to soundly ap-
proximate each shape predicate by a heap-independent
invariant which plays an important role in entailment
checking (Secs 2 and 4.1).

• We improve the expressiveness of our automatic ver-
ification tool by allowing it to capture both the size
properties and the bag of values from each shape
predicate. The numeric properties capture sophisti-
cated data structure invariants, such as orderedness (for
sorted list/trees) and also balanced height properties
(for AVL-trees). The bag constraints enable express-
ing reachability properties, such as the preservation of
the elements inside a list after sorting.

• We design a new procedure to check entailment of
separation heap constraints. This procedure uses un-
fold/fold reasoning to deal with shape definitions.
While the unfold/fold mechanism is not new, we have
identified sufficient conditions for soundness and ter-
mination of the procedure in the presence of recursive
user-defined shape predicates. (Secs 3.1, 4 and 5)

• We have implemented a prototype verification system
with the above features and have also proven both its
soundness and termination (Secs 6 and 7).

2 User-Definable Shape Predicates

Separation logic [23, 11] extends Hoare logic to support
reasoning about shared mutable data structures. It adds two
more connectives to classical logic : separating conjunction
∗, and separating implication −−∗. h1 ∗ h2 asserts that two
heaps described by h1 and h2 are domain-disjoint. h1−−∗h2

asserts that if the current heap is extended with a disjoint
heap described by h1, then h2 holds in the extended heap.
In this paper we use only separating conjunction.

We propose an intuitive mechanism based on induc-
tive predicates (or relations) to allow user specification of

shapely data structures with size and reachability proper-
ties. Our shape specification is based on separation logic
with support for disjunctive heap states. Furthermore, each
shape predicate may have pointer, integer or bag parame-
ters to capture relevant properties of data structures. We use
the following data node declarations for the examples in the
paper. They are recursive data declarations with different
number of fields.

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right;

node3 parent }

We use p::c〈v∗〉 to denote two things in our system.
When c is a data name, p::c〈v∗〉 stands for singleton heap
p7→[(f:v)∗] where f∗ are fields of data declaration c. When
c is a predicate name, p::c〈v∗〉 stands for the formula
c(p, v∗). The reason we distinguish the first parameter from
the rest is that each predicate has an implicit parameter
self as the first one. Effectively, self is a “root” pointer to
the specified data structure that guides data traversal and fa-
cilitates the definition of well-founded predicates (Sec 3.1).
As an example, a singly linked list with length n is described
by :

ll〈n〉≡(self=null∧n=0)∨(∃i, m, q · self::node〈i, q〉
∗q::ll〈m〉∧n=m+1) inv n≥0

Note that the parameter n captures a derived value. The
above definition asserts that an ll list can be empty (the
base case self=null) or consists of a head data node
(specified by self::node〈i, q〉) and a separate tail data
structure which is also an ll list (q::ll〈m〉). The ∗ connec-
tor ensures that the head node and the tail reside in disjoint
heaps. We also specify a default invariant n≥0 that holds
for all ll lists. Our predicate uses existential quantifiers for
local values and pointers, such as i, m, q.

A more complex shape, doubly linked-list with length n,
is described by :

dll〈p, n〉≡(self=null∧n=0)∨(self::node2〈 , p, q〉
∗q::dll〈self, n−1〉) inv n≥0

The dll shape predicate has a parameter p that represents
the prev field of the first node of the doubly linked-list. It
captures a chain of nodes that are to be traversed via the
next field starting from the current node self. The nodes
accessible via the prev field of the self node are not part
of the dll list. This example also highlights some shortcuts
we may use to make shape specification shorter. We use un-
derscore to denote an anonymous variable. Non-parameter
variables in the RHS of the shape definition, such as q, are
considered existentially quantified. Furthermore, terms may
be directly written as arguments of shape predicate or data
node.

User-definable shape predicates provide us with more
flexibility than some recent automated reasoning systems
[1, 3] that are designed to work with only a small set of fixed
predicates. Furthermore, our shape predicates can describe
not only the shape of data structures, but also their size and
bag properties. This capability enables many applications,
especially to support data structures with sophisticated in-
variants. For example, we may define a non-empty sorted
list as below. The predicate also tracks the length, the mini-
mum and maximum elements of the list.

sortl〈n, min, max〉 ≡
(self::node〈min, null〉 ∧ min=max ∧ n=1)

∨ (self::node〈min, q〉 ∗ q::sortl〈n−1, k, max〉 ∧ min≤k)
inv min≤max ∧ n≥1

The constraint min≤k guarantees that sortedness property
is adhered between any two adjacent nodes in the list. We
may now specify (and then verify) the following insertion
sort algorithm :

node insert(node x, node vn) where
x::sortl〈n, mi, ma〉 ∗ vn::node〈v, 〉 ∗→
res::sortl〈n+1, min(v, mi), max(v, ma)〉

{ if (vn.val≤x.val) then { vn.next:=x; vn }
else if (x.next=null) then

{ x.next:=vn; vn.next:=null; x }
else { x.next:=insert(x.next, vn); x }}

node insertion sort(node y) where
y::ll〈n〉 ∧ n>0 ∗→ res::sortl〈n, , 〉

{ if (y.next=null) then y
else { y.next:=insertion sort(y.next);

insert(y.next, y) }}

We use the notation Φpr ∗→Φpo to capture a precondi-
tion Φpr and a postcondition Φpo of a method. Note that we
use an expression-oriented language where the last subex-
pression (e.g. e2 from e1;e2) denotes the result of an ex-
pression. A special identifier res is used in the postcon-
dition to denote the result of a method. The postcondition
of insertion sort shows that the output list is sorted and
has the same number of nodes as the input list.

2.1 Bag of Values/Addresses

The earlier specification of sorting captures neither the
in-situ reuse of memory cells nor the fact that all the ele-
ments of the list are preserved by sorting. The reason is
that the shape predicate captures only pointers and num-
bers but does not capture the set of reachable nodes in a
heap predicate. A possible solution to this problem is to
extend our specification mechanism to capture either a set
or a bag of values. For generality and simplicity, we pro-
pose to use only the bag (or multi-set) notation that permits

duplicates, though set notation could also be supported. In
the rest of the paper, we will use the following bag opera-
tors: bag union t, bag intersection u, bag subsumption <,
and bag cardinality |B|. The shape specifications from the
previous section are revised as follows:

ll2〈n, B〉 ≡ (self=null∧n=0∧B={})
∨(self::node〈 , q〉∗q::ll2〈n−1, B1〉∧B=B1t{self})
inv n≥0∧|B|=n

sortl2〈B, mi, ma〉 ≡
(self::node〈mi, null〉∧mi=ma∧B={self})
∨ (self::node〈mi, q〉∗q::sortl2〈B1, k, ma〉
∧B=B1t{self} ∧ mi≤k)

inv mi≤ma ∧ B 6={}

Each predicate of the form ll2〈n, B〉 or
sortl2〈B, mi, ma〉 now captures a bag of addresses
B for all the data nodes of its data structure (or heap
predicate). With this extension, we can provide a more
comprehensive specification for in-situ sorting, as follows :

node insert(node x, node vn) where
x::sortl2〈B, mi, ma〉 ∗ vn::node〈v, 〉 ∗→
res::sortl2〈Bt{vn}, min(v, mi), max(v, ma)〉

{· · · }

node insertion sort(node y) where
y::ll2〈n, B〉 ∧ B6={} ∗→ res::sortl2〈B, , 〉

{· · · }

We stress that the bag mechanism used to capture the reach-
able nodes in a shape predicate is quite general. Instead of
heap addresses, we may also revise our views to capture a
bag of reachable values, as well as the length. For example:

ll3〈n, B〉 ≡ (self=null∧n=0∧B={})∨
(self::node〈a, q〉∗q::ll3〈n−1, B1〉∧B=B1t{a})
inv n≥0 ∧ |B|=n

Capturing a bag of values allows us to reason about the
collection of values in a data structure, and permits rele-
vant properties to be automatically verified. Both universal
and existential properties over bags may be expressed and
proven, when implemented with an appropriate constraint

solver, as highlighted below :

data pair{node v1; node v2}
pair partition(node x, int p) where
x::ll3〈n, A〉 ∗→ res::pair〈r1, r2〉 ∗ r1::ll3〈n1, B1〉∗
r2::ll3〈n2, B2〉∧A=B1tB2 ∧ n=n1 + n2 ∧ (∀a∈B1·a≤p)
∧(∀a∈B2·a>p)
{ if (x=null) then new pair(null, null)
else { pair t; t:=partition(x.next, p);

if (x.val≤p) then { x.next:=t.v1; t.v1:=x }
else { x.next:=t.v2; t.v2:=x };
t } }

bool allPos(node x) where
x::ll3〈n, B〉 ∗→ x::ll3〈n, B〉 ∧ ((∀a∈B·a≥0)∧res

∨ (∃a∈B·a<0)∧¬res)
{ if (x=null) then true
else if (x.val<0) then false

else allPos(x.next) }

The first example returns a pair of lists that have been
partitioned from a single input list according to an integer
pivot. This partition function and its pre/post specification
can be used to prove the total correctness of quicksort al-
gorithm. The second example uses existentially and univer-
sally quantified formulae to determine if at least one nega-
tive number is present in an input list, or not.

3 Automated Verification

In this section, we first introduce a core object-based im-
perative language and then propose a set of forward verifi-
cation rules to systematically check that preconditions are
satisfied at call sites, and that the declared postcondition is
successfully verified (assuming the precondition) for each
method definition.

3.1 Language

We provide a simple imperative language in Figure 1.
Our language is strongly typed and we assume programs
and constraints are well-typed. The language supports data
type declaration via datat, and shape predicate definition
via spred. For each shape definition spred, we also de-
clare a heap-independent invariant π0 over the parameters
{self, v∗} that holds for each instance of the predicate.

Each method meth and while loop is declared with pre-
and post-conditions of the form Φpr ∗→Φpo. For simplicity,
we assume that variable names declared in each method are
all distinct and that parameters are passed by-value. Primed
notation is used to denote the latest value of variables and
may appear in the postcondition of loops. For example, a
simple loop with pre/post conditions is shown below:

P ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
τ ::= int | bool | float | void
spred ::= c〈v∗〉 ≡ Φ inv π0

meth ::= t mn ((t v)∗) where
∧

(Φpr ∗→Φpo)∗ {e}
e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗)

| e1; e2 | t v; e | mn(v∗) | if v then e1 else e2

| while v where
∧

(Φpr ∗→Φpo)∗ do e
Φ ::=

∨
(∃v∗·κ∧π)∗ π ::= γ∧φ

γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | γ1∧γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2

a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2)
| min(s1,s2) | |B|

ϕ ::= v∈B | B1=B2 | B1<B2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1tB2 | B1uB2 | B1−B2 | {} | {v}

Figure 1. A Core Imperative Language

while x<0 where true ∗→ (x>0∧x′=x) ∨ (x≤0∧x′=0)
do { x:=x+1 }

Here x and x′ denote the values of variable x at the entry
and exit of the loop, respectively.

The separation constraints we use are in a disjunctive
normal form Φ. Each disjunct consists of a ∗-separated
heap constraint κ, referred to as heap part, and a heap-
independent formula π, referred to as pure part. The pure
part does not contain any heap nodes and is presently re-
stricted to pointer equality/disequality γ, Presburger arith-
metic φ and bag constraint ϕ. Furthermore, ∆ denotes a
composite formula that could always be normalised into the
Φ form (see Figure 3). The semantic model for the separa-
tion constraints is left in the technical report [19].

Separation constraints are used in pre/post conditions
and shape definitions. In order to handle them correctly
without running into unmatched residual heap nodes, we re-
quire each separation constraint to be well-formed, as given
by the following definitions:

Definition 3.1 (Accessible) A variable is said to be acces-
sible w.r.t. a shape predicate if it is a parameter or it is a
special variable, either self or res.

Definition 3.2 (Reachable) Given a heap constraint
κ = p::c〈v∗〉 ∗ κ1, node p::c〈v∗〉 is reachable from a
variable q if and only if the following relation holds:

reach(κ, q, p::c〈v∗〉) =df (p=q)
∨(κ1=q::cq〈.., r, ..〉∗κ2 ∧ reach(κ2, r, p::c〈v∗〉))

Definition 3.3 (Well-Formed Constraint) A separation
constraint Φ is well-formed if (i) every data node and shape
predicate are reachable from their accessible variables, (ii)
it is in a disjunctive normal form

∨
(∃v∗·κ∧γ∧φ)∗ where κ

is for heap nodes, γ is for pointer constraint, and φ is for
arithmetic formula.

The primary significance of the well-formed condition is
that all heap nodes of a heap constraint are reachable from
accessible variables. This allows the entailment checking
procedure to correctly match nodes from the consequent
with nodes from the antecedent of an entailment relation.

Arbitrary recursive shape relation can lead to non-
termination in unfold/fold reasoning. To avoid that prob-
lem, we propose to use only well-founded shape predicates
in our framework.

Definition 3.4 (Well-Founded Predicate) A shape predi-
cate is said to be well-founded if it satisfies four conditions,
namely: (i) it is a well-formed constraint, (ii) the parameter
self may only be bound to a data node and not a predicate,
(iii) only self is allowed to be bound to a data node and
(iv) every predicate is reachable from self.

Note that the definitions above are syntactic and can eas-
ily be enforced. An example of well-founded shape pred-
icates is avl - binary tree with near balanced heights, as
follows :

avl〈n, h〉 ≡ (self=null ∧ n=0 ∧ h=0)
∨ (self::node2〈 , p, q〉 ∗ p::avl〈n1, h1〉∗q::avl〈n2, h2〉
∧n=1+n1+n2∧ h=1+max(h1, h2) ∧ −1≤h1−h2≤1)
inv n, h≥0

In contrast, the following three shape definitions are not
well-founded.

foo〈n〉 ≡ self::foo〈m〉 ∧ n=m+1
goo〈〉 ≡ self::node〈 , 〉 ∗ q::goo〈〉
too〈〉 ≡ self::node〈 , q〉 ∗ q::node〈 , 〉

For foo, the self identifier is bound to a shape predicate.
For goo, the heap node pointed by q is not reachable from
variable self. For too, an extra data node is bound to a
non-self variable. The first example may cause infinite
unfolding, while the second example captures an unreach-
able (junk) heap that cannot be located by our entailment
procedure. The last example is just a syntactic restriction to
facilitate termination of proof reasoning, and can be easily
overcome by introducing intermediate predicates.

3.2 Forward Verification

We use P to denote the program being checked. With
pre/post conditions declared for each method in P , we can

[FV−PRED]
XPure0(Φ) =⇒ [0/null]π0

` c〈v∗〉 ≡ Φ inv π0

[FV−VAR]
∆1=(∆∧res=v′)
` {∆} v {∆1}

[FV−NEW]
∆1=(∆ ∗ res::c〈v′1, .., v′n〉)
` {∆} new c(v1, .., vn) {∆1}

[FV−ASSIGN]
` {∆} e {∆1}

∆2=∃res·(∆1∧{v}v
′=res)

` {∆} v:=e {∆2}

[FV−CALL]
t mn((ti vi)n

i=1) where Φpr ∗→Φpo {..} ∈ P
ρ=[v′i/vi] ∆`ρΦpr ∗∆1 ∆2=(∆1 ∗ Φpo)

` {∆}mn(v1..vn) {∆2}

[FV−METH]
V ={v1..vn} W=prime(V) ∆=Φpr∧nochange(V)

` {∆} e {∆1} (∃W·∆1)`Φpo ∗∆2

` t0 mn(t1 v1, .., tn vn) where Φpr ∗→ Φpo {e}

Figure 2. Some Forward Verification Rules

apply modular verification to a method’s body using Hoare-
style triples ` {∆1} e {∆2}. These are forward verifica-
tion rules that expect ∆1 to be given before computing ∆2.
Some rules are given in Fig 2 while others are left in the
technical report [19]. They are used to track heap states
as accurately as possible with path-, flow-, and context-
sensitivity. For each call site, [FV−CALL] ensures that the
callee’s precondition is satisfied. For each method defini-
tion, [FV−METH] checks that its postcondition holds for
the method body assuming its precondition. A method post-
condition may capture only part of the heap at the end of
the method, leaving the residue heap nodes in ∆2. For each
shape definition, [FV−PRED] checks that its given invari-
ant is a consequence of the well-founded heap formula. The
soundness of the forward verification is also left in the tech-
nical report.

We now explain the operators/functions used in our ver-
ification rules. The operator ∧{v} used in the assignment
rule is an instance of composition with update operators.
Given a state ∆1, a state change ∆2, and a set of variables
to be updated X={x1, . . . , xn}, the composition operator
⊕X is defined as:

∆1 ⊕X ∆2 =df ∃ r1..rn · ρ1 ∆1 ⊕ ρ2 ∆2

where r1, . . . , rn are fresh variables;
ρ1 = [ri/x′i]

n
i=1 ; ρ2 = [ri/xi]ni=1

Note that ρ1 and ρ2 are substitutions that link each latest
value of x′i in ∆1 with the corresponding initial value xi in
∆2 via a fresh variable ri. The binary operator⊕ is either ∧
or ∗. The function nochange(V) returns a formula asserting
that the unprimed and primed versions of each variable in
V are equal; prime(V) returns the primed form of all vari-
ables in V . [e∗/v∗] represents substitutions of v∗ by e∗.
A special case is [0/null], which denotes replacement of
null by 0. Normalization rules for separation constraints
are given in Figure 3. XPure is described in the next section.

3.3 Forward Verification Example

We present the detailed verification of the first branch
of the insert function from Sec 2. Note that pro-
gram variables appear primed in formulae whereas
logical variables unprimed. The proof is straightfor-
ward, except for the last step where a disjunctive heap
state is folded to form a shape predicate. The proce-
dure to perform the folding step is presented in Sec 4.
{x′::sortl〈n, mi, ma〉 ∗ vn′::node〈v, 〉} // precondition

if (vn.val ≤ x.val) then {
{(x′::node〈mi, null〉 ∗ vn′::node〈v, 〉 ∧ mi=ma ∧ n=1
∧ v≤mi) ∨ (∃q, k · x′::node〈mi, q〉∗q::sortl〈n−1, k, ma〉
∗vn′::node〈v, 〉 ∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)}

// unfold and conditional
vn.next := x;

{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1
∧ v≤mi) ∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉
∗vn′::node〈v, x′〉 ∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)}

// field update
vn

{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1
∧ v≤mi ∧ res=vn′) ∨ (∃q, k · x′::node〈mi, q〉
∗ q::sortl〈n−1, k, ma〉 ∗ vn′::node〈v, x′〉 ∧ mi≤k ∧ mi≤ma
∧n≥2 ∧ v≤mi ∧ res=vn′)} // returned value

}
{res::sortl〈n+1, min(v, mi), max(v, ma)〉}

// fold to postcondition

4 Entailment

We present in this section the entailment checking rules
for the class of constraints used by our verification system.

4.1 Separation Constraint Approximation

Entailment between separation formulae (detailed in sec-
tion 4.2) is reduced to entailment between pure formulae by
successively removing heap nodes from the consequent un-
til only a pure formula remains. When the consequent is

(∆1 ∨∆2) ∧ π ; (∆1 ∧ π) ∨ (∆2 ∧ π)
(∆1 ∨∆2) ∗∆ ; (∆1 ∗∆) ∨ (∆2 ∗∆)
(κ1∧π1) ∗ (κ2∧π2) ; (κ1∗κ2)∧(π1∧π2)
(κ1∧π1) ∧ (π2) ; κ1∧(π1∧π2)

(γ1∧φ1) ∧ (γ2∧φ2) ; (γ1∧γ2) ∧ (φ1∧φ2)
(∃x ·∆) ∧ π ; ∃y · ([y/x]∆ ∧ π)
(∃x ·∆1) ∗∆2 ; ∃y · ([y/x]∆1 ∗∆2)

Figure 3. Normalization Rules

pure, the heap formula in the antecedent is soundly approxi-
mated by function XPuren. The function XPuren(Φ), whose
definition is given in Fig 4, returns a sound approxima-
tion of Φ as formula ex i∗·

∨
(∃v∗·π)∗ where i∗ are (non-

null) distinct symbolic addresses of heap nodes of Φ. The
function IsData(c) returns true if c is a data node, while
IsPred(c) returns true if c is a shape predicate.

We illustrate how these functions work by computing
XPure1(p::ll〈n〉). Let Φ be the body of the ll predicate.

Inv0(p::ll〈n〉) =df n ≥ 0
XPure0(Φ) =df ex j · (self = 0 ∧ n = 0)

∨(self = j ∧ j > 0 ∧ n− 1 ≥ 0)
Inv1(p::ll〈n〉) =df [p/self]XPure0(Φ)
XPure1(p::ll〈n〉) =df ex i · [i/j]Inv1(p::ll〈n〉)

; ∃i · (p = 0 ∧ n = 0) ∨ (p = i ∧ i > 0 ∧ n > 0)
= (p = 0 ∧ n = 0) ∨ (p > 0 ∧ n > 0)

The following normalization rules are also used :

(ex I ·φ1)∨(ex J ·φ2) ; ex I∪J · (φ1 ∨ φ2)
∃ v · (ex I ·φ) ; ex I · (∃ v ·φ)
(ex I ·φ1)∧(ex J ·φ2) ; ex I∪J ·φ1∧φ2∧

∧
i∈I,j∈J i6=j

The ex i∗ construct is converted to ∃ i∗ when the formula
is used as a pure formula. The soundness of XPuren is for-
malized by :

Lemma 4.1 (Sound Invariant) Given a shape predicate
c〈v∗〉≡Φ inv π0, we have Φ |= Invn(self::c〈v∗〉) if
XPure0(Φ) =⇒ [0/null]π0. π0 is said to be sound.
Proof: By structural induction on Φ.

Lemma 4.2 (Sound Abstraction) Given a separation
constraint Φ where the invariants of the predicates appear-
ing in Φ are sound, we have Φ |= XPuren(Φ).
Proof : By structural induction on Φ.

Lemma 4.1 ensures that a supplied invariant that passes
[FV−PRED] is a semantic consequence of the predicate.
Lemma 4.2 asserts that it is safe to approximate an an-
tecedent by using XPure if all the predicate invariants are
sound. They also allow the possibility of obtaining a more
precise invariant by applying XPure one or more times. For
example, when given a pure invariant n≥0 for the predicate
ll〈n〉, a single application returns ex i·(self=0∧n=0 ∨
self=i∧i>0∧n>0) which is sound and more precise, as
it relates the nullness of the self pointer with the size n of
the list.

(c〈v∗〉 ≡ Φ inv π0) ∈ P
Inv0(p::c〈v∗〉) = [p/self, 0/null]π0

(c〈v∗〉 ≡ Φ inv π0) ∈ P
Invn(p::c〈v∗〉) = [p/self, 0/null]XPuren−1(Φ)

XPuren(
∨

(∃v∗·κ∧π)∗) =df

∨
(∃v∗·XPuren(κ)∧[0/null]π)∗

XPuren(emp) =df true

IsData(c) fresh i

XPuren(p::c〈v∗〉) =df ex i·(p=i∧i>0)

IsPred(c) fresh i∗ Invn(p::c〈v∗〉) = ex j∗ ·
∨

(∃u∗·π)∗

XPuren(p::c〈v∗〉) =df ex i∗ · [i∗/j∗]
∨

(∃u∗·π)∗

XPuren(κ1 ∗ κ2) =df XPuren(κ1) ∧ XPuren(κ2)

Figure 4. XPure : Translating to Pure Form

The invariants associated with shape predicates play an
important role in our system. Without the knowledge m≥0,
the entailment x::node〈 , y〉 ∗ y::ll〈m〉 ` x::ll〈n〉 ∧ n≥1
would not have succeeded due to n≥1. Without the more
precise derived invariant using XPure for predicate ll, the
entailment x::ll〈n〉 ∧ n>0 ` x 6=null would not have suc-
ceeded either.

4.2 Separation Constraint Entailment

We express the main procedure for heap entailment by
the relation

∆A`κ
V ∆C ∗∆R

which denotes κ ∗∆A`∃V ·(κ ∗∆C) ∗∆R.
The purpose of heap entailment is to check that heap

nodes in the antecedent ∆A are sufficiently precise to cover
all nodes from the consequent ∆C , and to compute a resid-
ual heap state ∆R. κ is the history of nodes from the an-
tecedent that have been used to match nodes from the conse-
quent, V is the list of existentially quantified variables from
the consequent. Note that k and V are derived. The en-
tailment checking procedure is invoked with κ = emp and
V = ∅. The entailment checking rules are given in Fig 5.
We discuss the matching rule in what follows, and leave un-
fold/fold rules to Sec 5.

The procedure works by successively matching up heap
nodes that can be proven aliased. As the matching process is
incremental, we keep the successfully matched nodes from

[ENT−EMP]
ρ=[0/null]

XPuren(κ1∗κ)∧ρπ1=⇒ρ∃V·π2

κ1∧π1`κ
V π2 ∗ (κ1∧π1)

[ENT−MATCH]
XPuren(p1::c〈v∗1〉∗κ1∗π1)=⇒p1=p2 ρ=[v∗1/v∗2]
κ1∧π1∧freeEqn(ρ, V)`κ∗p1::c〈v∗1 〉

V −{v∗2}
ρ(κ2∧π2) ∗∆

p1::c〈v∗1〉∗κ1∧π1`κ
V (p2::c〈v∗2〉∗κ2∧π2) ∗∆

[ENT−RHS−EX]
∆1`κ

V ∪{w}([w/v]∆2) ∗∆3

fresh w ∆=∃ w ·∆3

∆1`κ
V (∃ v ·∆2) ∗∆

[ENT−FOLD]
IsPred(c2)∧IsData(c1) (∆r, κr, πr)∈foldκ(p1::c1〈v∗1〉∗κ1∧π1, p2::c2〈v∗2〉)

XPuren(p1::c1〈v∗1〉∗κ1∗π1)=⇒p1=p2 (πa, πc)=split{v∗2}
V (πr) ∆r∧πa`κr

V (κ2∧π2∧πc) ∗∆
p1::c1〈v∗1〉∗κ1∧π1`κ

V (p2::c2〈v∗2〉∗κ2∧π2) ∗∆

[ENT−LHS−EX]
[w/v]∆1`κ

V ∆2 ∗∆
fresh w

∃v ·∆1`κ
V ∆2 ∗∆

[ENT−UNFOLD]
XPuren(p1::c1〈v∗1〉∗κ1∗π1)=⇒p1=p2 IsPred(c1)∧IsData(c2)

unfold(p1::c1〈v∗1〉)∗κ1∧π1`κ
V (p2::c2〈v∗2〉∗κ2∧π2) ∗∆

p1::c1〈v∗1〉∗κ1∧π1`κ
V (p2::c2〈v∗2〉∗κ2∧π2) ∗∆

[ENT−LHS−OR]
∆1`κ

V ∆3 ∗∆4

∆2`κ
V ∆3 ∗∆5

∆1∨∆2`κ
V ∆3 ∗ (∆4∨∆5)

[ENT−RHS−OR]
∆1`κ

V ∆i ∗∆R
i

∆1`κ
V (∆2∨∆3) ∗∆R

i

i∈{2, 3}

Figure 5. Separation Constraint Entailment

antecedent in κ for better precision. For example, consider
the following (valid) proof:

(((p=null ∧ n=0) ∨ (p 6=null ∧ n>0))
∧n>0 ∧ m=n) =⇒ p6=null

∆R = (n>0 ∧ m=n)
n>0 ∧ m=n `p::ll〈n〉 p6=null ∗ ∆R

p::ll〈n〉 ∧ n>0 ` p::ll〈m〉 ∧ p6=null ∗ ∆R

Had the predicate p::ll〈n〉 not been kept and used, the proof
would not have succeeded. Such an entailment would be
useful when, for example, a list with positive length n is
used as input for a function that requires a non-empty list.

Another feature of the entailment procedure is exempli-
fied by the transfer of m=n to the antecedent (and subse-
quently to the residue). In general, when a match occurs
(rule [ENT−MATCH]) and an argument of the heap node
coming from the consequent is free, the entailment proce-
dure binds the argument to the corresponding variable from
the antecedent and moves the equality to the antecedent. In
our system, free variables in consequent are variables from
method preconditions. Hence these bindings act as substitu-
tions that have to be kept in antecedent to allow subsequent
program state (from residual heap) to be aware of their val-
ues. This process is formalized by the function freeEqn be-
low, where V is the set of existentially quantified variables:

freeEqn([ui/vi]ni=1, V) =df

let πi = (if vi∈V then true else vi=ui) in
∧n

i=1 πi

For soundness, we perform a preprocessing step to ensure
that variables appearing as arguments of heap nodes and
predicates are i) distinct and ii) if they are free, they do
not appear in the antecedent by adding (existentially quan-
tified) fresh variables and equalities. This guarantees that
the generated substitutions are well-defined. It also guar-

antees that the formula generated by freeEqn does not in-
troduce any additional constraints over existing variables in
the antecedent, as one side of each equation does not appear
anywhere else in the antecedent.

5 Unfold/Fold Mechanism

Unfold/fold operations can be used to handle well-
founded inductive predicates in a deductive manner. In par-
ticular, we can unfold a predicate that appears in the an-
tecedent if it matches with a data node in the consequent.
Correspondingly, we fold a predicate that appears in the
consequent if it matches with a data node in the antecedent.
The well-founded condition is sufficient to ensure termina-
tion.

5.1 Unfolding a Shape Predicate in the
Antecedent

We apply an unfold operation on a predicate in the an-
tecedent that matches with a data node in the consequent.
Consider :

x::ll3〈n, B〉∧n>2 ` (∃r·x::node〈r, y〉∧y6=null
∧r ∈ B) ∗ ∆R

where ∆R captures the residue of entailment. For the entail-
ment to succeed, we would first unfold the ll3〈n, B〉 predi-
cate in the antecedent:

∃q1, v ·x::node〈v, q1〉∗q1::ll3〈n−1, B1〉∧n>2
∧B=B1 ∪ {v} ` (∃r·x::node〈r, y〉∧y 6=null ∧ r ∈ B) ∗ ∆R

After removing the existential quantifiers, we obtain:

x::node〈v, q1〉∗q1::ll3〈n−1, B1〉∧n>2 ∧ B=B1 ∪ {v}
` (x::node〈r, y〉∧y6=null ∧ r ∈ B) ∗ ∆R

The data node in the consequent is then matched up, giving:

q1::ll3〈n−1, B1〉∧n>2∧B=B1 ∪ {v}∧q1=y
` (q1 6=null ∧ v ∈ B) ∗ ∆R

Due to the well-founded condition, each unfolding ex-
poses a data node that matches the data node in the con-
sequent. Thus a reduction of the consequent immediately
follows, which contributes to the termination of the entail-
ment check. A formal definition of unfolding is given by
the [UNFOLDING] rule:

[UNFOLDING]
c〈v∗〉≡Φ ∈ P

unfold(p::c〈v∗〉) =df [p/self]Φ

5.2 Folding a Shape Predicate in the Con-
sequent

We apply a fold operation when a data node in the an-
tecedent matches with a predicate in the consequent. An
example is :

x::node〈1, q1〉∗q1::node〈2, null〉∗y::node〈3, null〉
` (x::ll3〈n, B〉∧n>1∧1 ∈ B) ∗ ∆R

The fold step may be recursively applied but is guaranteed
to terminate for well-founded predicate as it will reduce a
data node in the antecedent for each recursive invocation.
This reduction in the antecedent cannot go on forever. Fur-
thermore, the fold operation may introduce bindings for the
parameters of the folded predicate. In the above, we ob-
tain ∃n1, n2 · n = n1 + 1 ∧ n1 = n2 + 1 ∧ n2 = 0 and
∃B1, B2 · B = B1 ∪ {2} ∧ B1 = {1} ∪ B2 ∧ B2 = {},
where n1, n2, B1, B2 are existential variables introduced by
the folding process, and are subsequently eliminated. Each
of the previous formulae may be transferred to the an-
tecedent if n and B are free, respectively. Otherwise, they
will be kept in the consequent. Since n and B are indeed
free, our folding step would finally derive:

y::node〈3, null〉 ∧ n = 2 ∧ B = {1, 2}
` (n>1 ∧ 1 ∈ B) ∗ ∆R

The effects of folding may seem similar to unfolding the
predicate in the consequent. However, there is a subtle dif-
ference in their handling of bindings for free derived vari-
ables. If we choose to use unfolding on the consequent
instead, these bindings may not be transferred to the an-
tecedent. Consider the example below where n is free :

z=null ` z::ll3〈n, B〉 ∧ n>−1 ∗ ∆R
By unfolding the predicate ll〈n〉 in the consequent, we ob-
tain :

z=null ` (z=null∧n=0∧B = {}∧n>−1)
∨(∃q, v·z::node〈v, q〉∗q::ll3〈n−1, B1〉
∧B = B1 ∪ {v}∧n>−1) ∗ ∆R

There are now two disjuncts in the consequent. The second
one fails because it mismatches. The first one matches but
still fails as the derived binding n=0 was not transferred to
the antecedent.

When a fold to a predicate p2::c2〈v∗2〉 is performed, the
constraints related to variables v∗2 are important. The split
function projects these constraints out and differentiates
those constraints based on free variables.

split{v∗2}
V (

∧n
i=1 πr

i) =
let πa

i , πc
i = if FV(πr

i) ∩ v∗2 = ∅ then (true, true)
else if FV(πr

i) ∩ V = ∅ then (πr
i , true)

else (true, πr
i)

in (
∧n

i=1 πa
i ,

∧n
i=1 πc

i)

[FOLDING]
c〈v∗〉≡Φ ∈ P Wi=Vi−{v∗, p}

κ∧π`κ′

{p,v∗}[p/self]Φ ∗ {(∆i, κi, Vi, πi)}n
i=1

foldκ′
(κ∧π, p::c〈v∗〉) =df {(∆i, κi,∃Wi·πi)}n

i=1

A formal definition of folding is specified by rule
[FOLDING]. Some heap nodes from κ are removed by the
entailment procedure so as to match with the heap formula
of predicate p::c〈v∗〉. This requires a special version of en-
tailment that returns three extra things: (i) consumed heap
nodes, (ii) existential variables used, and (iii) final conse-
quent. The final consequent is used to return a constraint for
{v∗} via ∃Wi·πi. A set of answers is returned by the fold
step as we allow it to explore multiple ways of matching
up with its disjunctive heap state. Our entailment also han-
dles empty predicates correctly with a couple of specialised
rules.

6 Soundness of Entailment

The following theorems state that our entailment check
procedure (given in Fig. 5) is sound and terminating. Proofs
are given in the technical report [19].

Theorem 6.1 (Soundness) If entailment check
∆1`∆2 ∗∆ succeeds, we have: for all s, h, if s, h |= ∆1

then s, h |= ∆2 ∗∆.

Theorem 6.2 (Termination) The entailment check
∆1`∆2 ∗∆ always terminates.

7 Implementation

We have built a prototype system using Objective Caml.
The proof obligations generated by our verification are dis-
charged using either a constraint solver or a theorem prover.
This is organised as an option in our system and currently

covers automatic provers of Omega Calculator [22], Is-
abelle [21], and MONA [13].

Figure 6 summarizes a suite of programs tested. These
examples use complicated recursion and data structures
with sophisticated shape, size and bag properties. They
show that our approach is general enough to handle interest-
ing data structures such as sorted lists, sorted trees, priority
queues, balanced trees, etc. in a uniform way. Verification
time of a function includes time to verify all functions that
it calls.
Arithmetic Constraints.The time required for shape and
size verification is mostly within a couple of seconds when
using the Omega Calculator to discharge the proof obliga-
tions (third column). In order to have a reference point for
the Omega timings, we tried solving the same constraints
with two other theorem provers : Isabelle (fourth column)
and MONA (fifth column). From the former, we only used
an automatic but incomplete prover, which caused some
proofs to fail. The latter is an implementation of the weak
monadic second-order logics WS1S and WS2S. Therefore,
first-order variables can be compared and subjected only
to addition with constants. As Presburger arithmetic al-
lows the addition of arbitrary linear arithmetic terms, we
converted its formulas into WS1S by encoding naturals as
Base-2 bit strings. MONA translates WS1S and WS2S for-
mulas into minimum DFAs (Deterministic Finite Automata)
and GTAs (Guided Tree Automata), respectively. However,
this translation may cause a state-space explosion. In our
case, we confronted such a problem when verifying the
quick sort method, where the size of its corresponding
automaton exceeded the available space.
Bag/Set Constraints. Bag constraints were solved using
the multiset theory of Isabelle (sixth column), while weak
monadic second-order theory of 1 successor WS1S from
MONA was used to handle set constraints (seventh col-
umn). Due to the incompletness of the automatic prover
that we used from Isabelle, some of the proofs failed
(quick sort, delete max from priority queue heap and
insert into a red-black tree). On the other hand, MONA
seemed to provide satisfactory results when handling set
constraints.

From our experiments, we may conclude that verification
process is dominated by entailment proving of pure formu-
las that are fast with specialised solvers, such as Omega for
Presburger constraint and MONA for set constraints. The
timings for verifying shapes only (without size/bag prov-
ing) are benign, as reflected in the second column. An
important future work is to design a combination strategy
that allows specialised solvers to work well with mixed con-
straints and to handle large programs. We expect code mod-
ularity, decomposed shape views and multi-core parallelism
to be important techniques in performance engineering of
automated verification system.

8 Related Work

Separation Logic. The general framework of separation
logic [23, 11] is highly expressive but undecidable. Like-
wise, [17] formalised the proof rules for handling abstract
predicates (with scopes on visibility of predicates) but pro-
vided no automated procedure for checking the user sup-
plied specifications. In the search for a decidable fragment
of separation logic for automated verification, Berdine et
al. [1] supports only a limited set of predicates without size
properties, disjunctions and existential quantifiers. Simi-
larly, Jia and Walker [12] postponed the handling of recur-
sive predicates in their recent work on automated reasoning
of pointer programs. Our approach is more pragmatic as
we aim for a sound and terminating formulation of auto-
mated verification via separation logic but do not aim for
completeness in the expressive fragment that we handle.
On the inference front, Lee et al. [16] has conducted an
intraprocedural analysis for loop invariants using grammar
approximation under separation logic. Their analysis can
handle a wide range of shape predicates with local sharing
but is restricted to predicates with two parameters and with-
out size properties. A recent work [9] has also formulated
interprocedural shape inference but is restricted to just the
list segment shape predicate. Sims [26] extends separation
logic with fixpoint connectives and postponed substitution
to express recursively defined formulae to model the anal-
ysis of while-loops. However, it is unclear how to check
for entailment in their extended separation logic. While our
work does not address the inference/analysis challenge, we
have succeeded in providing direct support for automated
verification via an expressive shape and size specification
mechanism.
Shape Checking/Analysis. Many formalisms for shape
analysis have been proposed for checking user programs’
intricate manipulations of shapely data structures. One
well-known work is Pointer Assertion Logic [18] by
Moeller and Schwartzbach where shape specifications in
monadic second-order logic are given by programmers
for loop invariants and method pre/post conditions, and
checked by their MONA tool. For shape inference, Sa-
giv et al. [25] presented a parameterised framework, called
TVLA, using 3-valued logic formulae and abstract interpre-
tation. Based on the properties expected of data structures,
programmers must supply a set of predicates to the frame-
work which are then used to analyse that certain shape in-
variants are maintained. However, most of these techniques
were focused on analysing shape invariants, and did not at-
tempt to track the size properties of complex data structures.
An exception is the quantitative shape analysis of Rugina
[24] where a data flow analysis was proposed to compute
quantitative information for programs with destructive up-
dates. By tracking unique points-to reference and its height

Programs Without Omega Isabelle MONA Isabelle MONA
size/bag Calculator Prover Prover Prover Prover

Linked List verifies size/length verifies bag/set
delete 0.02 0.09 8.35 0.33 5.00 0.34
reverse 0.02 0.07 3.28 0.21 3.01 0.20

Circular Linked List verifies size + cyclic structure verifies bag/set + cyclic structure
delete (first) 0.01 0.09 5.46 0.26 7.17 0.40
count 0.04 0.16 14.99 0.71 21.01 2.29

Doubly Linked List verifies size + double links verifies bag/set + double links
append 0.05 0.16 28.18 0.83 23.73 0.93
flatten (from tree) 0.08 0.30 158.3 6.65 55.78 2.03

Sorted List verifies size + min + max + sortedness verifies bag/set + sortedness
delete 0.02 0.13 34.09 26.68 51.39 0.60
insertion sort 0.07 0.27 41.17 18.22 27.34 0.73
selection sort 0.10 0.41 79.08 20.62 221.7 1.10
bubble sort 0.16 0.64 358.7 9.36 221.2 2.84
merge sort 0.11 0.61 342.9 105.1 150.1 21.75
quick sort 0.19 0.59 642.0 out of memory failed 3.40

Binary Search Tree verifies min + max + sortedness verifies bag/set + sortedness
insert 0.03 0.20 failed 11.92 99.57 0.95
delete 0.06 0.38 97.5 6.86 943.5 3.03

Priority Queue Heap verifies size + height + max-heap verifies bag/set + size + max-heap
insert 0.15 0.45 520.8 41.55 416.2 6.45
delete max 0.55 7.17 failed 290.7 failed 626.1

AVL Tree verifies size + height + height-balanced verifies bag/set + height + height-balanced
insert 1.04 5.06 failed 36.02 1973 7.38

Red-Black Tree verifies size + black-height + height-balanced verifies bag/set + black-height + height-balanced
insert 0.44 1.53 2992 352.4 failed 392.8

Figure 6. Verification Times (in seconds) for Data Structures with Arithmetic and Bag/Set Constraints

property, their algorithm is able to handle AVL-like tree
structures. Even then, the author acknowledged the lack
of a general specification mechanism for handling arbitrary
shape/size properties.
Size Properties. In another direction of research, size prop-
erties have been most explored for declarative languages
[10, 28, 6] as the immutability property makes their data
structures easier to analyse statically. Size analysis was later
extended to object-based programs [7] but was restricted to
tracking either size-immutable objects that can be aliased
and size-mutable objects that are unaliased, with no sup-
port for complex shapes. The Applied Type System (ATS)
[5] was proposed for combining programs with proofs. In
ATS, dependent types for capturing program invariants are
extremely expressive and can capture many program prop-
erties with the help of accompanying proofs. Using linear
logic, ATS may also handle mutable data structures with
sharing. However, users must supply all expected proper-
ties, and precisely state where they are to be applied, with
ATS playing the role of a proof-checker. Comparatively,
we use a more limited class of constraint for shape and size
analysis but supports automated modular verification.

Set/Bag Properties. Set-based analysis has been proposed
to verify data structure consistency properties in [14], where
a decision procedure is given for a first order theory that
combines set and Presburger arithmetic. This result may
be used to build a specialised mixed constraint solver but
currently has high algorithmic complexity. In [15], Lahiri
and Qadeer reported an intra-procedural reachability analy-
sis for well-founded linked lists using first-order axiomati-
zation. Reachability analysis is related to set/bag property
that we capture but implemented by transitive closure at the
predicate level.
Unfold/Fold Mechanism. Unfold/fold techniques were
originally used for program transformation [4] on purely
functional programs. A similar technique called unroll/roll
was later used in alias types [27] to manually witness the
isomorphism between a recursive type and its unfolding.
Here, each unroll/roll step must be manually specified by
programmer, in contrast to our approach which applies
these steps automatically during entailment checking. In
[1], an automated procedure that uses unroll/roll was given
but it was hardwired to work for only lseg and tree predi-
cates. Furthermore, it performs rolling by unfolding a pred-

icate in the consequent which would miss bindings on free
variables. Our unfold/fold mechanism is general, auto-
matic and terminates for heap entailment checking.

9 Conclusion

We have presented a new approach to verifying pointer-
based programs that can precisely track shape, size and bag
properties. Our approach is built on well-founded shape re-
lations and well-formed separation constraints from which
we have designed a sound procedure for heap entailment.
Our automated deduction mechanism is based on the un-
fold/fold reasoning of user-definable predicates that has
been proven to be sound and terminating.

Acknowledgement

This work is supported by the Singapore-MIT Alliance and
NUS research grant R-252-000-213-112.

References

[1] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic Ex-
ecution with Separation Logic. In APLAS. Springer-Verlag,
November 2005.

[2] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot:
Modular automatic assertion checking with separation logic.
In FMCO, Springer LNCS 4111, 2006.

[3] J. Bingham and Z. Rakamaric. A Logic and Decision Pro-
cedure for Predicate Abstraction of Heap-Manipulating Pro-
grams. In VMCAI, Springer LNCS 3855, pages 207–221,
Charleston, U.S.A, January 2006.

[4] R.M. Burstall and J. Darlington. A transformation system for
developing recursive programs. Journal of ACM, 24(1):44–
67, January 1977.

[5] C. Chen and H. Xi. Combining Programming with Theorem
Proving. In ACM SIGPLAN ICFP, Tallinn, Estonia, Septem-
ber 2005.

[6] W.N. Chin and S.C. Khoo. Calculating sized types. In ACM
SIGPLAN PEPM, pages 62–72, Boston, United States, Jan-
uary 2000.

[7] W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H.
Nguyen. Verifying Safety Policies with Size Properties and
Alias Controls. In ACM SIGSOFT ICSE, St. Louis, Missouri,
May 2005.

[8] D. Distefano, P. W. O’Hearn, and H. Yang. A Local Shape
Analysis based on Separation Logic. In TACAS. Springer-
Verlag, March 2006.

[9] A. Gotsman, J. Berdine, and B. Cook. Interprocedural
Shape Analysis with Separated Heap Abstractions. In SAS,
Springer LNCS, Seoul, Korea, August 2006.

[10] J. Hughes, L. Pareto, and A. Sabry. Proving the correctness
of reactive systems using sized types. In ACM POPL, pages
410–423. ACM Press, January 1996.

[11] S. Isthiaq and P.W. O’Hearn. BI as an assertion language for
mutable data structures. In ACM POPL, London, January
2001.

[12] L. Jia and D. Walker. ILC: A foundation for automated rea-
soning about pointer programs. In 15th ESOP, March 2006.

[13] Nils Klarlund and Anders Mller. Mona version 1.4 - user
manual.

[14] V. Kuncak, H. H. Nguyen, and M. Rinard. An algorithm for
deciding bapa: Boolean algebra with presburger arithmetic.
In 20th International Conference on Automated Deduction
(CADE-20), Tallinn, Estonia, Jul 2005.

[15] S. Lahiri and S. Qadeer. Verifying Properties of Well-
Founded Linked Lists. In ACM POPL, South Carolina, Jan-
uary 2006.

[16] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer
programs using grammar-based shape analysis. In ESOP.
Springer Verlag, April 2005.

[17] M.J.Parkinson and G.M.Bierman. Separation logic and ab-
straction. In ACM POPL, pages 247–258, 2005.

[18] A. Moeller and M. I. Schwartzbach. The Pointer Assertion
Logic Engine. In ACM PLDI, June 2001.

[19] H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Au-
tomated Verification of Shape, Size and Bag Properties via
Separation Logic. Technical report, SoC, Natl Univ. of Sin-
gapore, July 2006. avail. at http://www.comp.nus.edu.sg/
∼chinwn/papers/verify-report.pdf.

[20] H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Auto-
mated Verification of Shape And Size Properties via Separa-
tion Logic. In VMCAI, Nice, France, January 2007.

[21] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, 2002.

[22] W. Pugh. The Omega Test: A fast practical integer program-
ming algorithm for dependence analysis. Communications
of the ACM, 8:102–114, 1992.

[23] J. Reynolds. Separation Logic: A Logic for Shared Mutable
Data Structures. In IEEE LICS, Copenhagen, Denmark, July
2002.

[24] R. Rugina. Quantitative Shape Analysis. In SAS, Springer
LNCS, Verona, Italy, August 2004.

[25] S. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. ACM TOPLAS, 24(3), May 2002.

[26] É-J. Sims. Extending separation logic with fixpoints and
postponed substitution. Theoretical Computer Science,
351(2):258–275, 2006.

[27] D. Walker and G. Morrisett. Alias Types for Recursive Data
Structures. In TIC, Springer LNCS 2071, pages 177–206,
2000.

[28] H. Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998.

