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Abstract. CSP# (Communicating Sequential Programs) is a modelling language designed for specifying
concurrent systems by integrating CSP-like compositional operators with sequential programs updating
shared variables. In this work, we define an observation-oriented denotational semantics in an open environ-
ment for the CSP# language based on the UTP framework. To deal with shared variables, we lift traditional
event-based traces into mixed traces which consist of state-event pairs for recording process behaviours.
To capture all possible concurrency behaviours between action/channel-based communications and global
shared variables, we construct a comprehensive set of rules on merging traces from processes which run in
parallel/interleaving. We also define refinement to check process equivalence and present a set of algebraic
laws which are established based on our denotational semantics. We further encode our proposed denota-
tional semantics into the PVS theorem prover. The encoding not only ensures the semantic consistency, but
also builds up a theoretic foundation for machine-assisted verification of CSP# specifications.
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1. Introduction

Communicating Sequential Processes (CSP) [Hoa85], a prominent member of the process algebra family, has
been designed to formally model concurrent systems whose behaviours are described as process expressions
together with a rich set of compositional operators. It has been widely accepted and applied to a variety of
safety-critical systems [WLBF09]. However, with the increasing size and complexity of concurrent systems,
it becomes clear that CSP is deficient to model non-trivial data structures (for example, hash tables) or
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functional aspects. To solve this problem, considerable efforts on enhancing CSP with data aspects have been
made. One approach is to integrate CSP (or CCS [Mil89], another popular process algebra) with state-based
specification languages, such as Circus [WC02], CSP-OZ [Fis97, Smi97], TCOZ [MD00, MD02, QDC03],
CSPσ [CH09], CSP‖B [ST05], and CCS+Z [GS97, TA97].

Inspired by the related works, CSP# [SLDC09] has been proposed to specify concurrent systems which
involve shared variables. It combines the event-based specifications with the state-based programs by intro-
ducing data operations to handle state transitions. CSP# integrates CSP-like compositional operators with
sequential program constructs such as assignments and while loops, for the purpose of expressive modelling
and efficient system verification. In addition, CSP# is supported by the PAT model checker [SLDP09] and
has been applied to a number of systems available at the PAT website (http://pat.comp.nus.edu.sg/).

An operational semantics of CSP# was defined by interpreting the behaviour of CSP# models using
labelled transition systems (LTS) [SLDC09]. Based on this semantics, model checking CSP# becomes pos-
sible. Nevertheless, the proposed operational semantics is not compositional and thus lacks the support of
compositional verification of process behaviours. Meanwhile, the model checking method based on the op-
erational semantics is certainly limited by the state explosion problem. In practice, the method can only be
used for checking the finite state transition systems. Therefore, there is a need for defining a compositional
denotational semantics to explain the notations of the CSP# language and further developing a theorem
proving approach to complement the model checking approach for system verification.

In this article, we propose a denotational semantics for CSP# and develop an interactive theorem proving
framework to support compositional verification. We firstly present an observation-oriented denotational
semantics for the CSP# language based on the UTP [HH98] framework in an open environment, where
process behaviours can be interfered with by the environment. The proposed semantics not only provides
a rigorous meaning of the language, but also allows one to deduce algebraic laws [HHH+87] describing the
properties of CSP# processes. To deal with shared variables, we lift traditional event-based traces into
mixed traces (consisting of state-event pairs) for recording process behaviours. To handle different types of
synchronisation in CSP# (i.e., action-based and synchronised handshake), we construct a comprehensive set
of rules on merging traces from processes which run in parallel/interleaving. These rules capture all possible
concurrent behaviours between event/channel-based communications and global shared variables.

Proving our deduced algebraic laws is important as such proofs can validate the correctness of our pro-
posed CSP# denotational semantics. However, manual proving is tedious, and subtle mistakes or omissions
can easily occur at any stage of the proofs. Moreover, a high grade of automated verification of system
properties can save much human effort. Therefore, a tool that allows semantics encoding and supports
machine-assisted proof is needed. In this work, we further encode the proposed observation-oriented denota-
tional semantics into the Prototype Verification System (PVS) [ORS92], which is an integrated framework
for formal specification and verification. PVS is an interactive theorem prover based on classical higher-order
logic, similar to other theorem provers such as HOL [GM93], Isabelle [Pau94] and Coq [BBC+96]. Nonethe-
less, PVS supports a richer type system and provides the ability to define subtypes. In our encoding, we
apply the built-in PVS theories for sets to the CSP# semantics, including the encoding of the semantic
model, expressions, sequential programs, and CSP# processes. In addition, we use the predefined function
subset? to represent the refinement relationship, and apply the predefined fixed point theory to formalising
recursive processes.

Contribution We highlight our contributions below.

• We propose a denotational semantics for the CSP# language based on the UTP framework, including
a semantic model and process semantics. The proposed semantic model deals with both communicating
processes and shared variables. It can also model both action-based synchronisation and synchronised
handshake over channels. Moreover, our model can be adapted/enhanced to define the denotational
semantics for other languages with similar concurrency mechanisms.

• We encode the proposed denotational semantics in the PVS theorem prover. The encoding not only
checks the consistency of the semantics, but also provides a framework for developing machine-assisted
verification for CSP# specifications. In addition, the proved laws can act as auxiliary reasoning rules to
improve verification automation.

The remainder of this article is organised as follows: Section 2 briefly introduces the CSP# language,
the UTP framework and the features of PVS. Section 3 constructs the observation-oriented denotational
semantics in an open environment based on the UTP framework; healthiness conditions are also defined to

http://pat.comp.nus.edu.sg/


A UTP Semantics for Communicating Processes with Shared Variables and its Formal Encoding in PVS 3

characterise the semantic domain. Section 4 discusses the algebraic laws. Section 5 formalises our denotational
semantics in PVS. Section 6 discusses related work. Section 7 concludes this article with possible future work.
This article is based on the publication [SZL+13] with a complete denotational semantics of CSP# and the
encoding of CSP# denotational semantics in PVS.

2. Preliminaries

In this section, we first introduce CSP# covering its syntax, informal descriptions, and an illustrative example
using the Dekker’s mutual exclusion algorithm. We next introduce the UTP theory which will be used
in Section 3. Finally, we introduce some knowledge of PVS that will be used in the encoding of CSP#
denotational semantics.

2.1. The CSP# Language

CSP# [SLDC09] integrates CSP-like compositional operators with sequential program constructs such as
assignments and while loops. It directly supports shared variables which are not available in the original
CSP [Hoa85]. Shared variables can be updated in sequential programs.

2.1.1. Syntax

A CSP# model may consist of definitions of constants, variables, channels, and processes. A constant is
defined by keyword #define followed by a name and a value, e.g., #define max 5. A variable is declared
with keyword var followed by a name and an initial value, e.g., var x = 2, and its scope is global. A channel
is declared using keyword channel with a name, e.g., channel ch. A process is specified in the form of
Proc(i1, i2, . . . , in) = P , where Proc is the process name, (i1, i2, . . . , in) is an optional list of process formal
parameters and P is a process expression.

Program ::= CSP#Par∗ – model
CSP#Par ::= #define cons v – constant

| var x = v1 – variable
| channel ch – channel
| ProcDel – process

ProcDel ::= Proc(ParDel) = P | Proc = P – process declaration
ParDel ::= i | i ,ParDel – parameter declaration
P ,Q ::= Stop | Skip – primitives

| a → P – event prefixing
| ch!exp → P | ch?m → Proc(m) – channel output/input
| {prog} → P – data operation prefixing
| [b]P – state guard
| P 2 Q | P u Q – external/internal choices
| P ; Q – sequential composition
| P \X1 – hiding
| P ‖(X1,X2)

Q | P |||X2
Q – parallel/interleaving

| N | µN • P – recursion

where cons is an identifier for a constant whose value is v , x is an identifier for a variable whose initial value
is v1, ch is an identifier for a channel, Proc is a process name, i is an identifier for a variable denoting a
process formal parameter, P and Q are processes, a is an action name, exp is an arithmetic expression, m is
a bound variable, prog is a sequential program updating global shared variables, b is a Boolean expression,
X1 is a set of actions, X2 is a set of synchronous channel inputs and outputs, and N is an identifier. In
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addition, the syntax of prog is illustrated as follows.

prog ::= skip – idle
| abort – abort
| x = exp – assignment
| prog ; prog – composition
| if b then prog else prog – conditional
| while b do prog – iteration

exp ::= v | x | exp + exp | exp − exp | exp ∗ exp
b ::= true | false | exp op exp | ¬b | b ∧ b | b ∨ b

where op ∈ {==, ! =, <,≤, >,≥}

Stop is the process that communicates nothing and Skip is the process that terminates successfully.
Event prefixing a → P engages in action a first and afterwards behaves as process P . In CSP#, channels are
synchronous and their communications are achieved by a handshaking mechanism1. Specifically, a process
ch!exp → P which is ready to perform an output through ch will be enabled if another process ch?m →
Proc(m) is ready to perform an input through the same channel ch at the same time, and vice versa. The
expression exp in ch!exp is evaluated atomically with the occurrence of the output. In process {prog} → P ,
prog is executed atomically, and after that process behaves as P . Process [b]P waits until condition b becomes
true and then behaves as P . The checking of condition b is conducted atomically with the occurrence of the
first event or state transition in P . External choice P 2 Q is resolved only by the occurrence of a visible event
or a state transition, and internal choice P u Q is resolved non-deterministically. Sequential composition
P ; Q behaves as P until P terminates and then behaves as Q . Process P\X1 hides all occurrences of actions
in X1. In process P ‖(X1,X2)

Q , P and Q run in parallel, and they synchronise on common communication

events in X1 and communications through synchronous channels in X2. In contrast, in process P |||X2
Q , P

and Q run independently (except for communications through synchronous channels in X2) [SLS+12].

2.1.2. Concurrency

As mentioned earlier, concurrent processes in CSP# can communicate through shared variables, events, or
synchronous channels.

Shared variables in CSP# are globally accessible; they can be read and written by different (parallel)
processes. Shared variables can be used in guard conditions, sequential programs in data operations, and
expressions in the channel outputs; nonetheless, they can only be updated in sequential programs. Further-
more, to avoid any possible data race problem when programs execute atomically, sequential programs from
different processes are not allowed to execute simultaneously.

A synchronisation event, which is also called an action, occurs instantaneously, and its occurrence may
require simultaneous participation by multiple processes. In contrast, a communication over a synchronous
channel is two-way between a sender process and a receiver process. Namely, a handshake communication
ch.exp occurs when both processes ch!exp → P and ch?m → Q(m) are enabled simultaneously. We remark
that this two-way synchronisation in CSP# [SLS+12] is different from CSPM where multi-part synchroni-
sation between many sender and receiver processes is allowed [Ros97].

2.1.3. Example

Dekker’s algorithm [Dij68] is the first correct solution to the mutual exclusion problem between two pro-
cesses. It allows two processes to share a single-use resource without conflicts using shared memory for
communication only. The mutual exclusion requirement is assured by three aspects: (1) no process will enter
its critical section without setting its flag, (2) one process checks the flag of the other process after setting
its own, and (3) if both flags are set, the turn variable is used to allow only one process to proceed. In our

1 Asynchronous channels are supported as well but not discussed in this article; and they can be simulated easily with global
variables.
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CSP# model, we define shared variables to specify concurrency using shared-memory communication.

1. var turn = 0

2. var flag0 = false

3. var flag1 = false

4. P0 = {flag0 = true} → (P0Check ; (css0→ cse0→ {turn = 1} → {flag0 = false} → P0))

5. P0Check = [flag1]flag1readT → ([turn == 0]turnRead0→ P0Check

2 [turn ! = 0]turnRead1→ {flag0 = false} → P0Wait)

2 [¬flag1]flag1readF → Skip

6. P0Wait = [turn == 0]turnRead0→ {flag0 = true} → P0Check

2 [turn ! = 0]turnRead1→ P0Wait

7. P1 = {flag1 = true} → (P1Check ; (css1→ cse1→ {turn = 0} → {flag1 = false} → P1))

8. P1Check = [flag0]flag0readT → ([turn == 1]turnRead1→ P1Check

2 [turn ! = 1]turnRead0→ {flag1 = false} → P1Wait)

2 [¬flag0]flag0readF → Skip

9. P1Wait = [turn == 1]turnRead1→ {flag1 = true} → P1Check

2 [turn ! = 1]turnRead0→ P1Wait

10. Dekker = (({turn = 0} → (P0 |||∅ P1)) 2 ({turn = 1} → (P0 |||∅ P1))) \ {turnRead0, turnRead1,flag0readT ,flag0readF ,

flag1readT ,flag1readF}

In the above model, shared variable turn denotes who has a priority to enter the critical section, and shared
variables flag0 and flag1 denote the status of acquiring the resource to enter the critical section of process 0
and 1, respectively. Our model corresponds to the pseudocode of the Dekker’s algorithm [Dek] step by step
and uses an event to specify the condition checking over a shared variable and a data operation to specify
the value updating of the shared variable in [Dek].

CSP# process P0 specifies that before entering the critical section, process 0 first sets its flag to be true
(capturing mutual exclusion requirement (1)) and then checks the other process’s flag (capturing mutual
exclusion requirement (2)) modelled by CSP# process P0Check . P0Check specifies two possible behaviours,
on one hand, if the other process’s flag is also set (captured by condition flag1), then the turn variable is
checked (capturing mutual exclusion requirement (3)). Event flag1readT captures the operation on checking
the true value of the variable flag1 in the pseudocode, and condition checking flag1 is performed simulta-
neously with the occurrence of flag1readT . If it is the process 0’s turn (condition turn == 0 being true), it
moves to process P0Check for another checking modelled by process recursion. If the turn belongs to the
other process (condition turn ! = 0 being true), the flag of process 0 is cleared (modelled by data operation
{flag0 = false}) before busy waiting. Process P0Wait models the busy waiting for the turn assigned to
process 0. After the turn being assigned, process 0 sets its flag (modelled by data operation {flag0 = true}),
and moves to the checking process P0Check . On the other hand, if process 1’s flag is not set (¬flag1 at line
5), then process 0 starts to enter the critical section. We specify event css0 and cse0 at line 4 to represent a
critical section start and a critical section end respectively. After exiting its critical section, process 0 passes
the turn ({turn = 1} at line 4), and releases the resource ({flag0 = false} at line 4). The behaviour of process
1 is similar.

Process Dekker specifies the whole behaviour of the algorithm where the initial value of turn is set non-
deterministically, and processes 0 and 1 run concurrently modelled by the interleaving operator |||∅. Events
turnRead0, turnRead1,flag0readT ,flag0readF ,flag1readT ,flag1readF are hidden by the hiding operator in
the process Dekker as these events only specify the condition checking and they do not add anything to
the meaning of the program. Note that when processes P0 and P1 run interleaving, sequential programs
(e.g., flag0 = true and flag1 = true) in P0 and P1 respectively will not execute simultaneously according to
CSP#’s modelling feature.

2.2. UTP Theory

The Unifying Theories of Programming (UTP) [HH98] uses relations as a unifying basis to define denotational
semantics for programs across different programming paradigms. For each programming paradigm, programs
are generally interpreted as relations between initial observations and subsequent (intermediate or final)
observations of the behaviours of their execution. Relations are represented as predicates over observational
variables to capture all aspects of program behaviours.
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Theories of programming paradigms in the UTP framework are differentiated by their alphabet, signature
and healthiness conditions. The alphabet is a set of observational variables recording external observations
of the program behaviour. The signature defines the syntax to represent the elements of a theory. The
healthiness conditions are a selection of laws identifying valid predicates that characterise a theory.

The observational variables in the alphabet of a theory record the observations that are relevant to
program behaviours. Variables of initial observations are undashed, constituting the input alphabet of a
relation, and variables of subsequent observations are dashed, constituting the output alphabet of a relation.
For example, in the imperative paradigm, variables x , y , . . . , z record the initial state of program variables,
and x ′, y ′, . . . , z ′ record the final state of program variables. In a theory of reactive processes, the Boolean
variable wait distinguishes the intermediate observations of a waiting state from the observations of a final
state for reactive processes; the Boolean variable ok records the stability of program, i.e., whether it is in a
stable state or in a divergent state; variable tr records the interaction between a process and its environment;
ref records the set of events that could be refused before the observation.

The signature of a theory is a set of atomic components called primitives and combinators. The primitives
in the signature of relational programming are assignment x = e, empty skip, top > for miracle and bottom
⊥ for abort. The combinators are conditional P / b . Q , composition P ; Q , nondeterminism P u Q and
recursion µX • F (X ). Here, x is a variable in the alphabet, e is an expression, P and Q are predicates
describing behaviours of two programs, X is a bound variable standing for a predicate, and F is a monotonic
function.

A healthiness condition is associated with observational variables in the alphabet. It is defined by an
idempotent function φ on predicates. A healthy program represented by predicate P satisfies healthiness
condition φ if it is a fixed point of φ:

P = φ(P).

For example, if a program P has not started, the observation of its behaviour is impossible. This can be
captured by a healthiness condition H (P) = ok ⇒ P requiring that program P satisfies the following
equation:

P = H (P) or P = (ok ⇒ P).

In the above example, if Boolean variable ok is true, then program starts and its behaviour is described by
predicate P . If ok is false, then its behaviour is not restricted as predicate ok ⇒ P is true.

2.3. Prototype Verification System

Prototype Verification System (PVS) [ORS92, COR+95] is an integrated environment for the development
and analysis of formal specifications. It combines an expressive modelling language with an interactive prover
that has powerful theorem proving capabilities.

The specification language is based on classical typed higher-order logic. Its type system consists of base
types such as Boolean (bool), integer (int), real numbers (real) and type constructors for function types,
tuple types, and record types. A function type is usually of the form [D -> R], where D and R are type
expressions, denoting the domain and range of the function respectively. Tuple types (also called product
types) have the form [T1, ..., Tn], where the Ti are type expressions. Projection function ‘i is used
to project the ith element of the tuple. Record types are of the form [# a1:T1, ..., an:Tn #], where
the ai are called record accessor or fields and the Ti are types. For example, a record type R consisting
of an integer number x and a Boolean variable b is specified as R:TYPE = [# x: int, b: bool #], given
a record r: VAR R, its x-component is accessed by r‘x. The type system of the PVS is augmented with
predicate subtypes. Subtypes can be specified in two different ways. Given a type X and predicate P on
the elements of X, a subtype of X with respect to P can be specified as either T: TYPE={x:X|P(x)} or T:
TYPE = (P). The type checking of subtypes is undecidable, and may lead to proof obligations, called type
correctness conditions (TCCs). Users are required to discharge these TCCs with the assistance of the PVS
prover. Another important feature of PVS type system is the provision of abstract datatypes. Familiar data
structures of programming languages such as lists and binary trees can be specified in PVS using the abstract
datatypes. For example, the following PVS specification declares a list using abstract datatype.
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list [T: TYPE]: DATATYPE
BEGIN
null: null?
cons(car: T, cdr: list): cons?

END list

To be specific, list is parametric in type T, and has two constructors null and cons: null takes no arguments
and cons takes two arguments, where the first is of the type T and the second is a list. Two predicates null?
and cons? are recognisers: null? holds for exactly those elements of the list datatype that are identical
to null, and cons? holds for exactly those elements of the list datatype that are constructed using cons.
Note that two accessors, car and cdr, correspond to the two arguments of cons; they can only be applied
to lists which satisfy the cons? predicate.

A PVS specification is given as a collection of parameterised theories. Each theory may consist of dec-
larations, definitions and formulas. Declarations are used to define types, variables, constants, and so on.
Note that constant declarations introduce new constants with their associated types and a value optionally,
and constants can be functions, relations or the usual (0-ary) constants. PVS supports recursive definitions,
which are total functions. Hence, it must be ensured that all recursive functions terminate, specified by a
measure expression. The measure expression follows the MEASURE keyword and ends with an optional order
relation following a BY keyword. The recursive definition generates a termination TCC which denotes that
the measure function applied to recursive arguments decreases with respect to a well-formed ordering. A
proof obligation must be discharged by users. A formula can be declared to introduce an axiom using the
keyword AXIOM and a theorem using the keyword LEMMA. Axioms can be referenced by the command lemma
during proofs. The body of the formula is a Boolean expression. Moreover, PVS supports the name overload-
ing which allows the same name from different theories or within a single theory. The collections of theories
are organised by means of importings.

The interactive PVS prover [SORSC01] provides a collection of powerful proof commands to perform in-
duction, propositional and equality reasoning, rewriting, model checking and so on. For example, a frequently
used powerful proof command is grind, which does skolemization, instantiation, simplification, rewriting and
applying decision procedures.

3. The Observation-oriented Semantics for CSP#

In this section, we first define the semantic model including the observational variables and healthiness
conditions. We then define the meanings of arithmetic and Boolean expressions as well as the denotational
semantics of sequential programs. Based on the semantic model and the semantics of expressions and pro-
grams, we define the denotational semantics of CSP# processes.

3.1. Semantic Model

The challenge of defining a denotational semantics for CSP# is to design an appropriate model which can
cover not only communications but also the shared variable paradigm and satisfy the compositional property.
To address the challenge, we blend communication events with states containing shared variables. Namely,
we introduce mixed traces to record the interactions of processes with the global environment; each trace is
a sequence of communication events or (shared variable) state pairs.

3.1.1. Observational Variables

The following variables are introduced in the alphabet of observations of CSP# process behaviours. Some of
them (i.e., ok , ok ′, wait , wait ′, ref , and ref ′) are similar to those in the UTP theory for CSP [HH98]. The
key difference is that the event-based traces in CSP are changed to mixed traces consisting of state-event
pairs.

• ok , ok ′: Boolean describe the stability of a process.
ok = true records that the process has started in a stable state, whereas ok = false records that the
process has not started as its predecessor has diverged.
ok ′ = true records that the process has reached a stable state, whereas ok ′ = false records that the
process has diverged.
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• wait , wait ′: Boolean distinguish the intermediate observations of waiting states from the observations of
final states.
wait = true records that the execution of the previous process has not finished, and the current process
starts in an intermediate state, while wait = false records that the execution of the previous process has
finished and the current process may start.
wait ′ = true records that the next observation of the process is in an intermediate state, while wait ′ =
false records that the next observation is in a terminated state.

• ref , ref ′: PEvent denote a set of actions and channel inputs/outputs that can be refused before or after
the observation. The set Event denotes all possible actions and channel input/output directions (e.g.,
ch?, ch!). An input direction ch? denotes any input through channel ch, and a channel output direction
ch! denotes any output through channel ch. The set Act denotes all possible actions.

• tr , tr ′: seq((S × S⊥) ∪ (S × E)) record a finite sequence of observations (state pairs or communication
events) on the interaction of the processes with the global environment.

– S is the set of all possible mappings (states), and a state s : VAR→ int is a total function which maps
global shared variables names from VAR into values of integer int. Notice that the types of variable
values and channel messages are integer in our proposed semantics.

– E is the set of all possible events, including actions, channel inputs/outputs and synchronous channel
communications.

– S×S⊥ is the set of state pairs, and each pair consists of a pre-state recording the initial variable values
before the observation and a post-state recording the final values after the observation. S⊥ =̂ S∪{⊥}
represents all states, where the improper state ⊥ indicates non-termination. Note that the state pair
is used to record the observation for the data operation.

– S × E denotes a set of occurring events under the pre-states. The reason of recording the pre-state
is that the value of the expression which may contain shared variables in a channel output shall be
evaluated under this state.

3.1.2. Healthiness Conditions

Healthiness conditions are defined as equations in terms of an idempotent function φ on predicates. Every
healthy program represented by predicate P must be a fixed point under the healthiness condition of its
respective UTP theory, i.e., P = φ (P).

In CSP#, a process can never change the past history of the observations; instead, it can only extend the
record, captured by healthiness condition R1. We use predicate P to represent the semantics of the CSP#
process below. Predicate tr ≤ tr ′ states that tr is a prefix of tr ′.

R1: R1(P) = P ∧ tr ≤ tr ′

The execution of a process is independent of the history before its activation, captured by function R2.

R2: R2(P(tr , tr ′)) = us P(s, s a (tr ′ − tr))
As mentioned earlier, variable wait distinguishes a waiting state from the final state. A process cannot

start if its predecessor has not finished, or otherwise, the values of all observational variables are unchanged,
characterised by function R3.

R3: R3(P) = II C wait B P
where P C b B Q =̂ b ∧P ∨¬b ∧Q and II =̂ (¬ok ∧ tr ≤ tr ′)∨ (ok ′ ∧ tr ′ = tr ∧wait ′ = wait ∧ ref ′ = ref ).
Here II states that if a process is in a divergent state, then only the trace can be extended, or otherwise, it
is in a stable state, and the values of all observational variables remain unchanged.

When a process is in a divergent state, it can only arbitrarily extend the trace. This feature is captured
by function CSP1.

CSP1: CSP1(P) = (¬ok ∧ tr ≤ tr ′) ∨ P
Every process is monotonic in the observational variable ok ′. This monotonicity property is modelled by

function CSP2 which states that if an observation of a process is valid when ok ′ is false, then the observation
should also be valid when ok ′ is true.

CSP2: CSP2(P) = P ; ((ok ⇒ ok ′) ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref )
We below use H to denote all healthiness conditions satisfied by the CSP# process.

H = R1 ◦R2 ◦R3 ◦CSP1 ◦CSP2
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From the above definition, we can see that although CSP# satisfies the same healthiness conditions of CSP,
observational variables tr , tr ′ in our semantic model record additional information for shared variable states.
We adopt the same names for the idempotent functions used in CSP for consistency. In addition, function
H is idempotent and monotonic [CW06, HH98].

3.2. Semantics of Expressions and Programs

In this section, we define the semantics of arithmetic expressions, Boolean expressions and programs. The
definitions will be used in Section 3.3.

Definition 1 (Arithmetic Expression). Let Aexp be the set of arithmetic expressions defined in Sec-
tion 2.1.1 (exp ∈ Aexp), the evaluation of the expression is defined as a function A : Aexp→ (S→ int).

A[[v ]](s) = v
A[[x ]](s) = s(x )
A[[exp1 + exp2]](s) = A[[exp1]](s) +A[[exp2]](s)
A[[exp1 − exp2]](s) = A[[exp1]](s)−A[[exp2]](s)
A[[exp1 ∗ exp2]](s) = A[[exp1]](s) ∗ A[[exp2]](s)

Definition 2 (Boolean Expression). Let Bexp be the set of Boolean expressions defined in Section 2.1.1
(b ∈ Bexp), given a valuation, function B returns whether a Boolean expression is valid, defined as B :
Bexp→ (S→ Boolean).

B[[true]](s) = true
B[[false]](s) = false

B[[exp1 op exp2]](s) =

{
true if A[[exp1]](s) op A[[exp2]](s), where op ∈ {==, ! =, <,≤, >,≥}
false otherwise

B[[¬b]](s) = ¬(B[[b]](s))
B[[b1 ∧ b2]](s) = B[[b1]](s) ∧ B[[b2]](s)
B[[b1 ∨ b2]](s) = B[[b1]](s) ∨ B[[b2]](s)

Definition 3 (Sequential Program). Let Prog be the set of sequential programs defined in Section 2.1.1
(prog ∈ Prog), function C returns the updated valuations after executing the program, defined as C : Prog→
(S × S⊥).

C[[skip]] = {(s, s) | s ∈ S}
C[[abort ]] = {(s, s ′) | s ∈ S, s ′ ∈ S⊥}
C[[x = exp]] = {(s, s[A[[exp]](s)/x ]) | s ∈ S}
C[[prog1; prog2]] = {(s, s ′) | ∃ s0 ∈ S • (s, s0) ∈ C[[prog1]] ∧ (s0, s

′) ∈ C[[prog2]]} ∪
{(s,⊥) | (s,⊥) ∈ C[[prog1]]}

C[[if b then prog1 else prog2]] = {(s, s ′) | B[[b]](s) ∧ (s, s ′) ∈ C[[prog1]]} ∪
{(s, s ′) | ¬(B[[b]](s)) ∧ (s, s ′) ∈ C[[prog2]]}

C[[while b do prog ]] = {(s, s ′) | (s, s ′) ∈ C[[µX • F (X )]]}
In the above definition, continuous function F (X ) =̂ if b then prog ; X else skip, and C[[µX • F (X )]] =̂⋂

n C[[F n(abort)]].

3.3. Semantics of Processes

In this section, we construct an observation-oriented semantics for all CSP# process operators based on our
proposed UTP semantic model for CSP#. We define the semantics in an open environment to achieve the
compositionality property; namely, a process may be interfered with by the environment. In Section 3.1.1, we
defined a mixed trace to record the potential events and state transitions in which a process P may engage;
for example, the trace tr ′ = 〈(s1, s

′
1), (s2, a2)〉 describes the transitions of process P . In an open environment,

tr ′ may contain an (implicit) transition (s ′1, s2) as the result of interference by the environment where states
s ′1 and s2 can be different.
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In the following, we illustrate our semantic definitions for the CSP# process operators, and present the
refinement definition.

3.3.1. Primitives

Deadlock process Stop never engages in any event or updates shared variables, and it is always waiting.

Stop =̂ H(ok ′ ∧ tr ′ = tr ∧ wait ′)

The semantics shows that the trace is unchanged and process is in a waiting state (represented by wait ′ being
true). In addition, Stop refuses all events, so the final value of the refusal set, ref ′, is left unconstrained.

Process Skip terminates immediately without any event or state change occurring.

Skip =̂ H(∃ ref • II )

Reactive identity II constrains that if a process terminates, then there is no change on the trace. The initial
refusal of Skip is irrelevant to its behaviour, defined by the existential quantifier. After termination, the
refusal set ref ′ is arbitrary.

3.3.2. Sequential Composition

In process P ; Q , P takes control first and Q starts only when P has finished.

P ; Q =̂ ∃ obs0 • (P [obs0/obs ′] ∧Q [obs0/obs])

The semantics of sequential composition shows that if process P diverges, then so does the process P ; Q .
If process P is in a waiting state, then the following process Q cannot start. If P terminates, then process
Q starts immediately and the final observation of process P is the initial observation of process Q . In the
above definition, the term obs represents the set of observational variables ok , wait , tr , and ref , as is the
case for obs0 and obs ′.

3.3.3. Event Prefixing

Process a → P engages in event a first and afterwards behaves as process P . Event a defined here is an action
which occurs instantaneously, and may require simultaneous participation by more than one processes.

a → P =̂ H

 ok ′ ∧

 a 6∈ ref ′ ∧ tr ′ = tr
Cwait ′B
∃ s ∈ S • tr ′ = tr a 〈(s, a)〉

 ; P

The above semantics shows two possible behaviours: when a process is waiting to engage in action a, it
cannot refuse this action during the waiting period (represented by predicate a 6∈ ref ′), and its trace is
unchanged; or a process performs action a and terminates with its trace extended with this observation (by

predicate tr ′ = tr a 〈(s, a)〉). Since the environment may interfere with the process behaviour and make a
transition on the shared variable states, we use state s from the variable state set S to denote the initial state
before the observation. Note that the semantics of sequential composition “; ” is defined in Section 3.3.2.

3.3.4. Synchronous Channel Output/Input

In CSP#, messages can be sent/received synchronously through channels. The synchronisation is pairwise,
involving two processes. Specifically, a synchronous channel communication ch.exp can take place only if an
output ch!exp is enabled and a corresponding input ch?m is also ready.

ch!exp → P =̂ H

 ok ′ ∧

 ch? 6∈ ref ′ ∧ tr ′ = tr
Cwait ′B
∃ s ∈ S • tr ′ = tr a 〈(s, ch!A[[exp]](s))〉

 ; P

The above semantics of synchronous channel output depicts two possible behaviours: when a process is wait-
ing to communicate on channel ch, it cannot refuse any channel input over ch provided by the environment
to perform a channel communication (represented by predicate ch? 6∈ ref ′), and its trace is unchanged; or a
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process performs the output through ch and terminates without divergence. The observation of the trace is
recorded as a tuple (s, ch!A[[exp]](s)), where the value of the output message is evaluated under the pre-state
s. Here function A defines the semantics of arithmetic expressions, and its definition is in Definition 1. After
the output occurs, the process behaves as P .

ch?m → Proc(m) =̂ ∃ v ∈ int •

H

 ok ′ ∧

 ch! 6∈ ref ′ ∧ tr ′ = tr
Cwait ′B
∃ s ∈ S • tr ′ = tr a 〈(s, ch?v)〉

 ; Proc(v)


As shown above, the semantics of synchronous channel input is similar to channel output except that when
a process is waiting, it cannot refuse any channel output provided by the environment, and after the process
receiving a message v from channel ch, its trace is appended with a tuple (s, ch?v). In addition, parameter
m cannot be modified in process Proc; namely, it becomes constant-like and its value is replaced by value v .

3.3.5. Data Operation Prefixing

In process {prog} → P , the sequential program prog , which is executed atomically, is called a data operation.
The observation of the data operation is the updates on shared variables which are observed after the
execution of all programs as illustrated below.

{prog} → P =̂ H

 ok ′ ∧ ∃ s ∈ S •


wait ′ ∧ tr ′ = tr a 〈(s,⊥)〉
C(s,⊥) ∈ C[[prog ]]B
¬wait ′ ∧ ∃ s ′ ∈ S • (tr ′ = tr a 〈(s, s ′)〉

∧(s, s ′) ∈ C[[prog ]])


 ; P

If the evaluation of the program does not terminate (represented by predicate (s,⊥) ∈ C[[prog ]]), then the
process is in a waiting state, and its trace is extended with the record of non-termination. On the other hand,
if the evaluation succeeds and terminates, then the process terminates and the state transition is recorded in
the trace. Note that post-state s ′ after the observation is associated with the pre-state s under the semantics
of sequential programs ((s, s ′) ∈ C[[prog ]]). Function C defines the semantics of the sequential programs by
inductive definition [Win93], and its definition is in Definition 3. After the data operation occurs, the process
behaves as P .

3.3.6. Choice

Internal choice denotes that process P u Q behaves like either P or Q . The selection is made internally and
non-deterministically, not affected by the environment.

P u Q =̂ P ∨Q

External choice denotes that for process P 2 Q , the selection of process P or Q is controlled by the
environment, i.e., the choice is resolved by the occurrence of the first visible event or the first state transition.

P 2 Q =̂ H((P ∧Q) C Stop B (P ∨Q))

The above definition shows that if no observation has been made and termination has not occurred (i.e.,
process Stop is true), then the process has both possible behaviours of P and Q . Alternatively, if an obser-
vation had been made (i.e., process Stop is false), then process behaviour will be either that of P or that of
Q depending on from which choice is made.

3.3.7. State Guard

Process [b]P waits until condition b becomes true and then behaves as P . The checking of condition b is
performed simultaneously with the occurrence of the first event or state transition of process P . But note
that in some situation, the process P behaves like Skip; that is, no state could be observed to judge the

truth of condition b. In order to deal with this issue, we construct process P̂ from P by adding a stuttering

step. Obviously, all possible difference (tr ′ − tr) of P̂ are non-empty traces. Thus we can always judge the

truth of b according to the behaviours of P̂ .
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[b]P =̂ P̂ / (B(b)(π1(head(tr ′ − tr))) ∧ tr < tr ′) . Stop

P̂ =̂ P ∧ tr < tr ′ ∨ P(tr , tr) ∧ ∃ s ∈ S · tr ′ − tr = 〈(s, s)〉
The semantics states that if the Boolean guard b is satisfied under the state from the initial observation of

P̂ , represented by π1(head(tr ′ − tr)), then the observation of whole process is the same as P̂ , or otherwise,
process behaves as process Stop. Function π1 selects the first element of a tuple and head returns the first
element of a sequence. Note that the semantics of traditional conditional choice if (b) {P} else {Q} can be
equivalent to the semantics of [b]P ∨ [¬b]Q .

3.3.8. Parallel Composition

The parallel composition P ‖(X1,X2)
Q executes P and Q in the following way: (1) common actions of P and Q

require simultaneous participation, (2) synchronous channel output in one process occurs simultaneously with
the corresponding channel input in the other process, and (3) other events of processes occur independently.

In CSP, the semantics of parallel composition is defined in terms of the merge operator ‖M in UTP [HH98],
where the predicate M captures how to merge two observations. To deal with channel-based communications
and shared variable updates in CSP#, we here define a new merge predicate M (X1,X2) to model the merge
operation. The set X1 defined in Section 2.1.1 contains common actions of both processes and the set X2 all
synchronous channel inputs and outputs. Namely,

P ‖(X1,X2)
Q =̂ H

(
∃ 0.ok , 0.wait , 0.ref , 0.tr ,

1.ok , 1.wait , 1.ref , 1.tr
•

(
P [0.ok , 0.wait , 0.ref , 0.tr/ok ′,wait ′, ref ′, tr ′] ∧
Q [1.ok , 1.wait , 1.ref , 1.tr/ok ′,wait ′, ref ′, tr ′] ∧
M (X1,X2)

))
where

M (X1,X2) =̂


(ok ′ = 0.ok ∧ 1.ok) ∧
(wait ′ = 0.wait ∨ 1.wait) ∧
(ref ′ = (0.ref ∩ 1.ref ∩X2) ∪ ((0.ref ∪ 1.ref ) ∩X1)

∪ ((0.ref ∩ 1.ref )−X1 −X2))
(tr ′ − tr ∈ (0.tr − tr ‖X1

1.tr − tr))


The predicate M (X1,X2) captures four kinds of behaviours of a parallel composition. First, the composition
diverges if either process diverges (represented by predicate ok ′ = 0.ok ∧ 1.ok). Second, the composition
terminates if both processes terminate (wait ′ = 0.wait ∨1.wait). Third, the composition refuses synchronous
channel outputs/inputs that are refused by both processes (0.ref ∩ 1.ref ∩X2), all actions that are in the set
X1 and refused by either process ((0.ref ∪ 1.ref ) ∩ X1), and events that are not in the set X1 and X2 but
refused by both processes ((0.ref ∩ 1.ref )−X1 −X2). Last, the trace of the composition is a member of the
set of traces produced by the trace synchronisation function ‖X1

as elaborated below.

Function ‖X1
models how to merge two individual traces into a set of all possible traces; there are five

cases covering both traces are empty, one of the trace is empty and both traces are non-empty. In the
following definitions, s1, s ′1, s2, s ′2 are representative elements of variable states with termination, a, a1, a2

are representative elements of actions, ch is a representative element of channel names, and v , v1, and v2 are
values with integer type.

• Firstly, function ‖X1
is symmetric, i.e., t1 ‖X1

t2 = t2 ‖X1
t1.

• The first case covers two scenarios, (1) if both input traces are empty, the result is a set of an empty
sequence; (2) if only one input trace is empty, the result is determined based on the first observation of
that non-empty trace: if that observation is an action in the set X1 which requires synchronisation, then
the result is a set containing only an empty sequence, or otherwise, the first observation is recorded in
the merged trace.
case-1 1◦ 〈 〉 ‖X1

〈 〉 = {〈 〉}

2◦ 〈(s1, h)〉a t ‖X1
〈 〉 =

{ {〈 〉} if h ∈ X1

{〈(s1, h)〉a l | l ∈ t ‖X1
〈 〉} otherwise

where h ∈ {a, ch?v , ch!v , ch.v , s ′1,⊥}
• When a communication is over a synchronous channel, if the first observations of two input traces match

(see Definition 4 below), then a synchronisation may occur (denoted by the set G1) or at this moment
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a synchronisation does not occur (denoted by the set G2). Otherwise, a synchronisation cannot occur.
Here, two observations are matched provided that both channel input and output from two processes
respectively are enabled under the same pre-state.

Definition 4 (Match). Given two pairs p1 = (s1, h1) and p2 = (s2, h2), where h1 ∈ {ch?v1, ch!v1, ch.v1},
h2 ∈ {ch?v2, ch!v2, ch.v2}, we say that they are matched if s1 = s2, {h1, h2} = {ch?v1, ch!v1} and v1 = v2
are satisfied, denoted as match(p1, p2).

case-2 〈(s1, h1)〉a t1 ‖X1
〈(s2, h2)〉a t2 =

{
G1 ∪ G2 if match((s1, h1), (s2, h2))
G2 otherwise

where h1 ∈ {ch?v1, ch!v1, ch.v1}, h2 ∈ {ch?v2, ch!v2, ch.v2}, G1 =̂ {〈(s1, ch.v)〉 a l | l ∈ t1 ‖X1
t2}, and

G2 =̂ {〈(s1, h1)〉a l | l ∈ t1 ‖X1
〈(s2, h2)〉a t2} ∪ {〈(s2, h2)〉a l | l ∈ 〈(s1, h1)〉a t1 ‖X1

t2}.
• When two actions (a1 and a2) are synchronised, there are four scenarios with respect to the initial states

(s1 and s2) and actions from the first observations of two traces: (1) both actions are in the set X1 but
different or actions under different pre-states, (2) actions from X1 are the same and under the same
pre-state, (3) one of the actions is not in X1, and (4) both actions are not in X1. As shown in case-3
below, the result is a set containing only an empty sequence for scenario (1). A synchronisation occurs
under scenario (2), although it is postponed to occur under scenario (3). Either action can occur for
scenario (4).

case-3 〈(s1, a1)〉a t1 ‖X1
〈(s2, a2)〉a t2 =

{〈 〉} a1, a2 ∈ X1 ∧ (a1 6= a2 ∨ s1 6= s2)

{〈(s1, a1)〉a l | l ∈ t1 ‖X1
t2} a1, a2 ∈ X1 ∧ a1 = a2 ∧ s1 = s2

{〈(s2, a2)〉a l | l ∈ 〈(s1, a1)〉a t1 ‖X1
t2} a1 ∈ X1 ∧ a2 6∈ X1

{〈(s1, a1)〉a l | l ∈ t1 ‖X1
〈(s2, a2)〉a t2}

∪
{〈(s2, a2)〉a l | l ∈ 〈(s1, a1)〉a t1 ‖X1

t2}
a1 6∈ X1 ∧ a2 6∈ X1

• When the first observation of one input trace is in a waiting state (captured by ⊥) which indicates the
evaluation of the sequential program does not terminate, the result depends on the other first observation,
(1) if both observations are in waiting states, the result is a set of either observation, (2) if the other
first observation is an action requiring the synchronisation (h ∈ X1), the result contains the waiting
observation only, (3) or otherwise, either observation from two processes occurs. Note that a process
could not perform any further if its trace ends with a state pair (s,⊥).
case-4 1◦ 〈(s1,⊥)〉 ‖X1

〈(s2,⊥)〉 = {〈(s1,⊥)〉, 〈(s2,⊥)〉}

2◦ 〈(s1,⊥)〉 ‖X1
〈(s2, h)〉a t =

{ {〈(s1,⊥)〉} if h ∈ X1

{〈(s1,⊥)〉} ∪ {〈(s2, h)〉a l | l ∈ 〈(s1,⊥)〉 ‖X1
t} otherwise

where h ∈ {a, ch?v , ch!v , ch.v , s ′2}
• When the first observation of one trace is an action a or a post-state s ′1, and the other is a channel input

ch?v , output ch!v , communication ch.v , or a post-state s ′2, the merged observation is different, (1) if a
is from the set X1, then its occurrence is postponed (G3), (2) or otherwise, either observation from two
processes occurs (G3 ∪ G4).

case-5 〈(s1, h1)〉a t1 ‖X1
〈(s2, h2)〉a t2 =

{
G3 if h1 ∈ X1

G3 ∪ G4 otherwise

where h1 ∈ {a, s ′1}, h2 ∈ {ch?v , ch!v , ch.v , s ′2}, G3 =̂ {〈(s2, h2)〉 a l | l ∈ 〈(s1, h1)〉 a t1 ‖X1
t2}, and

G4 =̂ {〈(s1, h1)〉a l | l ∈ t1 ‖X1
〈(s2, h2)〉a t2}.

3.3.9. Interleave

In the open environment, processes P and Q run independently (except communications through synchronous
channels) for P |||X2

Q . The semantics of the interleave operator defined below is based on the definition of
parallel operator where the set X1 is empty.

P |||X2
Q =̂ P ‖(∅,X2)

Q



14 L. Shi et al.

3.3.10. Hiding

The hiding operator makes all occurrences of actions in X1 hidden from the environment of the process.
Thus the actions in set X1 are not recorded in the process trace.

P \X1 =̂ H(∃ t • P [t ,X1 ∪ ref ′/tr ′, ref ′] ∧ (tr ′ − tr) = hide(t − tr ,X1)) ; Skip

The definition of hiding is defined by renaming the final trace of P as t , and restricting t to the trace which
contains all the events of process P except those in set X1, captured by the function hide. The refusal set of
P is the union of the final refusal set and set X1. Note that Act denotes a set of actions.

hide : seq((S× E) ∪ (S× S⊥))× PAct → seq((S× E) ∪ (S× S⊥))
hide(〈 〉,X1) =̂ 〈 〉

hide(〈(s, e)〉a t ,X1) =̂

{
hide(t ,X1) if e ∈ X1

〈(s, e)〉a hide(t ,X1) otherwise

3.3.11. Refinement

Refinement calculus is designed to produce correct programs, assisting in the software development. In
the UTP theory, it is expressed as logic implication; an implementation (denoted as predicate P) satisfy-
ing a specification (denoted as predicate S ) is formally expressed by universal quantification implication
∀ a, a ′, · · · • P ⇒ S , where a, a ′, · · · are all observational variables of the alphabet, which must be the
same for the specification and implementation. The universal quantification implication is usually denoted
as [P ⇒ S ]. The definition of refinement in CSP# is given as below.

Definition 5 (Refinement). Let P and Q be predicates for CSP# processes with the same shared variable
state space, the refinement P w Q holds iff [P ⇒ Q ].

The refinement ordering in our definition is strong; every observation that satisfies P must also satisfy Q .
The observation includes all process behaviours, i.e., stability, termination, traces, and refusals. Moreover,
the record of the trace considers both variable states and event occurrences. For example, given a process
P = [x = 2]b → Skip 2 [x ! = 2]c → Skip, and a process Q = [x = 2]b → Skip 2 [x ! = 2]d → Skip, the
refinement P w Q does not hold although one observation satisfies both processes when x is equal to 2. A
counterexample is that when x is not equal to 2, processes P and Q perform action c and d , respectively.

Notice that we only allow that in the trace sequence of process P , every element shall be the same as
its counterpart in Q . In other words, our refinement prevents atomic program operations updating shared
variables from being refined by non-atomic program operations which make the same effect. For example,
given a process P = {x = x + 1} → {x = x + 1} → Skip, and a process Q = {x = x + 2} → Skip, the
refinement P w Q does not hold.

Definition 6 (Equivalence). For any two CSP# processes P and Q , P is equivalent to Q if and only if
P w Q ∧Q w P .

3.3.12. Recursion

Let p be a variable standing for a call to a recursive process, F be a monotonic function from CSP# processes
to CSP# processes, we consider the explicit definition (µ p • F (p)) of recursion whose semantics is defined
as the weakest fixed point, which is the greatest lower bound of all the fixed points of P with the bottom
element H (true) and the top element H (false); namely, u{p | p w F (p)}.

3.3.13. Discussion

So far, we have defined the denotational semantics of CSP#. Based on the semantics, CSP# satisfies the
following two properties.

Lemma 1 (Monotonicity). All process combinators defined in the CSP# language are monotonic2.

2 The proofs of Lemma 1 are available online at http://www.comp.nus.edu.sg/~pat/semantics.zip.

http://www.comp.nus.edu.sg/~pat/semantics.zip
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Theorem 3.1 (Compositionality). The open semantics of CSP# is compositional.

Proof. Given a process combinator F and processes P ,Q such that P and Q are equivalent with respect
to the open semantics, we have P w Q and Q w P according to Definition 6. According to Lemma 1,
both F (P) w F (Q) and F (Q) w F (P) are valid, which indicates F (P) = F (Q), i.e., the open semantics is
compositional. 2

4. Algebraic Laws

In this section, we present a set of algebraic laws concerning the distinct features of CSP#.

State Guard
guard - 1 [b1]([b2]P) = [b1 ∧ b2]P
guard - 2 [b](P1 op P2) = [b]P1 op [b]P2 where op ∈ {‖,2,u}
guard - 3 [false]P = Stop
guard - 1 enables the elimination of nested guards. guard - 2 shows the distribution of the state guard
through parallel composition, external choice and internal choice. guard - 3 shows that process [false]P
behaves like Stop because its guard can never be fired.

Sequential Composition
seq - 1 (P1 ; P2) ; P3 = P1 ; (P2 ; P3)
seq - 2 P1 ; (P2 u P3) = (P1 ; P2) u (P1 ; P3)
seq - 3 (P1 u P2) ; P3 = (P1 ; P3) u (P2 ; P3)
seq - 4 P = Skip ; P
seq - 5 P = P ; Skip
seq - 1 shows that sequential composition is associative. seq - 2, 3 show the distribution of sequential
composition through internal choice. seq - 4, 5 show that process Skip is the left and right unit of sequen-
tial composition respectively, which show that CSP# processes also satisfy CSP3 and CSP4 healthiness
conditions of CSP [HH98], i.e., CSP3(P) = Skip ; P and CSP4(P) = P ; Skip.

Data Operation Prefixing
dat - 1 {while true do prog} → P = {while true do prog} → Q
dat - 2 {prog1} → P ‖(X1,X2)

{prog2} → Q = {prog1} → (P ‖(X1,X2)
{prog2} → Q) op

{prog2} → ({prog1} → P ‖(X1,X2)
Q) where op ∈ {2,u}

dat - 3 {prog1} → P ‖(X1,X2)
h → Q = {prog1} → (P ‖(X1,X2)

h → Q) 2

h → ({prog1} → P ‖(X1,X ′
2)

Q)

where h ∈ {ch?x , ch!exp, ch.v}, and X ′2 is the set of all synchronous channel outputs and inputs of processes
P and Q .

dat - 4 {prog1} → P ‖(X1,X2)
a → Q =


{prog1} → (P ‖(X1,X2)

a → Q) if a ∈ X1

{prog1} → (P ‖(X1,X2)
a → Q) 2

a → ({prog1} → P ‖(X1,X2)
Q) if a 6∈ X1

dat - 1 indicates that the loop operation would hold the execution of process. dat - 2 indicates that data
operations running in parallel do not need to be synchronised and are executed independently. dat - 3
shows that the data operation and any type of channel communication running in parallel are executed
independently. dat - 4 shows the data operation should be executed firstly if a is the common action of
process P and Q ; otherwise, they are executed independently.

The following non-law shows that the data operation in CSP# is atomic; that is the program prog1; prog2
completes in a single observation.
nla - 1 {prog1} → {prog2} → P 6= {prog1; prog2} → P

Parallel Composition
par - 1 P1 ‖(X1,X2)

P2 = P2 ‖(X1,X2)
P1

par - 2 (P1 ‖(X1,X2)
P2) ‖(X1,X2)

P3 = P1 ‖(X1,X2)
(P2 ‖(X1,X2)

P3)
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par - 3 Skip ‖(∅,X2)
P = P = P ‖(∅,X2)

Skip where X2 is the set of all synchronous channel outputs

and inputs of process P .
par - 1, 2 show that parallel composition is commutative and associative. Consequently, the order of parallel
composition is irrelevant. par - 3 shows that process Skip is the unit of parallelism.

Interleave
inter - 1 P1 |||X2

P2 = P2 |||X2
P1

inter - 2 (P1 |||X2
P2) |||X2

P3 = P1 |||X2
(P2 |||X2

P3)

inter - 3 Skip |||X2
P = P = P |||X2

Skip where X2 is the set of all synchronous channel outputs and
inputs of process P .
inter - 1, 2 show that interleaving is commutative and associative. Consequently, the order of interleaving
is irrelevant. inter - 3 shows that process Skip is the unit of interleaving which shows that CSP# processes
satisfy CSP5 healthiness condition, i.e., CSP5(P) = P |||X2

Skip.

Hiding
hid - 1 (P\X )\Y = (P\Y )\X
hid - 2 (P\X )\Y = P\(X ∪Y )
hid - 3 P\∅ = P
hid - 4 Skip\X = Skip

hid - 5 (a → P)\X =

{
P\X if a ∈ X
a → (P\X ) if a 6∈ X

hid - 6 (µN • (a → N )) \ {a} = CHAOS where CHAOS =̂ H (true)
hid - 1 shows that the hiding operator is commutative and the order is not critical. hid - 2 shows that the
nested hiding can be combined. hid - 3 shows that the hiding is void if the hidden set is empty. hid - 4
shows that nothing will be hidden for the process Skip. hid - 5 indicates that the behaviours of the hiding
operation depends on the relation between a and X . hid - 6 shows that if the only action in a recursive
process is hidden, the behaviour of the hidden process leads to CHAOS is the worst CSP# process.

All algebraic laws can be established based on our denotational model. That is to say, if the equality of
two syntactically different processes is algebraically provable, then the two processes are also equivalent with
respect to the denotational semantics. Moreover, these algebraic laws can be used as auxiliary reasoning rules
to prove process equivalence during theorem proving. Below we use guard - 3 as an example to show that
this particular law can be proved using our proposed denotational semantics. The proofs of the soundness
of some other algebraic laws with respect to the denotational semantics are available online3.
Law guard - 3 [false]P = Stop
Proof:

[false]P [3.3.7]

= P̂ / (B(false)(π1(head(tr ′ − tr))) = true ∧ tr < tr ′) . Stop [Def . 2]

= P̂ / false . Stop [predicate calculus]
= Stop 2

where P̂ =̂ P ∧ tr < tr ′ ∨ P(tr , tr) ∧ ∃ s ∈ S · tr ′ − tr = 〈(s, s)〉

5. Encoding CSP# Denotational Semantics in PVS

So far, we have defined the denotational semantics of CSP#. To validate the consistency of our proposed
semantics and further provide a machine-assisted support for verification, we encode the UTP semantics for
CSP# in the PVS theorem prover [OSRSC01]4.

Our encoding includes three parts which are illustrated in the following subsections. First the theory
of semantic model defines observational variables and healthiness conditions. Based on the semantic model
theory, we define the theory of expressions and programs which encodes carefully the syntax and semantics
of arithmetic expressions, Boolean expressions and sequential programs. Further, the semantics of processes

3 http://www.comp.nus.edu.sg/~pat/semantics.zip
4 PVS theories and proofs for CSP# semantics are available online at http://www.comp.nus.edu.sg/~pat/semantics.zip.

http://www.comp.nus.edu.sg/~pat/semantics.zip
http://www.comp.nus.edu.sg/~pat/semantics.zip
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and refinement relationship are formalised in the theory of process. At the end of this section, we discuss
machine-assisted proofs of important algebraic laws and lemmas based on the encoding in PVS.

5.1. The Theory of Semantic Model

The first challenge of the semantic model encoding is to develop an appropriate data structure to represent
the observational variables and relations over observational variables. The second challenge is to capture
different types of events dedicated to CSP#. To address these challenges, we adopt PVS abstract datatype
constructor to handle event types and PVS set theory to model relations as illustrated below.

5.1.1. The Theory of Observational Variables

CSP# supports concurrency over communications and shared variables. We first define the shared variable
state and event type in PVS. The following shows the formalised type for variable states (S) and all states
(S abort).

Vars: TYPE+
S: TYPE+ = [Vars -> int]
S_abort: DATATYPE
BEGIN
abort: abort?
is_S(left_s: S): is_S?

END S_abort

In the above specification, type S is encoded as a function from variable type Vars to int. We define all
states as a disjoint union by using a PVS abstract datatype: abort and is S are constructors, predicates
abort? and is S? are recognisers of the type [S abort -> bool], which determine whether the argument
is constructed using the corresponding constructor. Note that a similar fashion of applying the PVS abstract
datatype is used throughout the rest of the section to model complex CSP# types.

CSP# supports both event synchronisation and pairwise handshake through synchronous channels. Thus
event E includes actions, synchronous channel inputs, outputs and communications. To represent E, we define
a datatype as follows.

E: DATATYPE WITH SUBTYPES RefE, Channelcom
BEGIN
action(ac:Ta): action?: RefE
input(ci:Ti): input?: RefE
output(co:To): output?: RefE
chancom(cm:Tm): chancom?: Channelcom

END E

Here, Ta is the type of actions, Ti is the type of channel inputs, To is the type of channel outputs, and Tm is
the type of channel communications. Subtypes RefE and Channelcom denote the set of refused events and
channel communications, respectively.

In our semantics, CSP# processes are interpreted as relations between initial observations and subsequent
observations of their execution behaviours. Namely, relations are represented as predicates over observational
variables. In Section 3.1.1, we have defined eight variables for the alphabet of CSP# semantics to capture all
aspects of process behaviours. In PVS, we use a record type AB to represent this alphabet of the observations
of CSP# process behaviours, and a set of such records to represent a relation.

AB: TYPE = [# ok:bool, ok1:bool, wait:bool, wait1:bool, ref:set[RefE], ref1:set[RefE],
tr:Trace, tr1:Trace #]

Relation: TYPE = set[AB]

In the above formalisation, a dashed variable is represented by its undashed variable name suffixed with
number 1, e.g., ok1 denotes variable ok ′. In our semantics for the trace, we use a sequence to record the
observations on the interaction of the process with its environment. We use the PVS predefined datatype
list below to represent the sequence. Thus an empty sequence can be represented by a null list (null),
and sequence concatenation can be formalised by the predefined function append over lists. To simplify the
PVS encoding, we define a function snoc for appending a single element to a list of type SE (the trace) and
function <= for checking the trace prefixing relationship.
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Predicate PVS

¬P {pre:AB|NOT P(pre)}
P ∧ Q {pre:AB|P(pre) AND Q(pre)}
P ∨ Q {pre:AB|P(pre) OR Q(pre)}
P ⇒ Q {pre:AB|P(pre) IMPLIES Q(pre)}

Table 1. Predicate formalisation in PVS

S_E: DATATYPE
BEGIN

state(s1:S_abort): state?
event(e:E): event?

END S_E
SE: TYPE+ = [S, S_E]

t, t1: VAR Trace
se: VAR SE
snoc(t, se): Trace = append(t, cons(se, null))
<=(t,t1): bool = EXISTS (t2: Trace): t1 = append(t, t2)

Based on the formalisation of the alphabet and relation, we next illustrate how to formalise the detailed
predicates in PVS. In general, a predicate P on the alphabet is encoded as a set {pre:AB|P(pre)}, and logic
operators ¬, ∧, ∨ and ⇒ are formalised as NOT, AND, OR, and IMPLIES respectively in PVS. A summary of
the formalisation is shown in Table 1, where P and Q are predicates, and P and Q are sets in PVS.

5.1.2. The Theory of Healthiness Conditions

CSP# satisfies the healthiness conditions R1 to R3 for reactive processes.
P: VAR Relation
R1(P): Relation = {pre:AB|P(pre) AND pre‘tr <= pre‘tr1}
R2(P): Relation = {pre:AB|EXISTS(s:Trace): (EXISTS(pre0:AB): P(pre0) AND

pre‘tr = s AND pre‘tr1 = append(s, pre0‘tr1-pre0‘tr) AND pre0‘tr <= pre0‘tr1 AND
pre‘ok = pre0‘ok AND pre‘wait = pre0‘wait AND pre‘ref = pre0‘ref AND
pre‘ok1 = pre0‘ok1 AND pre‘wait1 = pre0‘wait1 AND pre‘ref1 = pre0‘ref1)}

II: Relation = {pre:AB|(NOT pre‘ok AND pre‘tr <= pre‘tr1) OR (pre‘ok1 AND
pre‘tr1 = pre‘tr AND pre‘wait1 = pre‘wait AND pre‘ref1 = pre‘ref)}

R3(P): Relation = {pre:AB|IF pre‘wait THEN II(pre) ELSE P(pre) ENDIF}
In our encoding, P is declared as a variable with type Relation, specified by P: VAR Relation. Healthiness
condition R1 is formalised as a function R1. Specifically R1 takes an arbitrary relation P as an input and
returns a relation satisfying a predicate which is modelled as as a set of records; each record is a member
of the relation (denoted as P(pre)) and its final trace extends the initial trace (denoted as pre‘tr <=
pre‘tr1). Function R2 specifies that observation of the process is not changed given the value s of pre‘tr
made arbitrary. Function R3 specifies that for each element pre, if the value of pre‘wait is true, then pre
is a member of the reactive identity relation II, or otherwise, it is a member of relation P.

In addition, CSP# satisfies two healthiness conditions CSP1 and CSP2 for communicating sequential
processes, defined as follows.

CSP1(P): Relation = {pre: AB|(NOT pre‘ok AND pre‘tr <= pre‘tr1) OR P(pre)}
CSP2(P): Relation = {pre: AB|EXISTS (p:AB): P(p) AND

(pre‘ok = p‘ok AND pre‘wait = p‘wait AND pre‘ref = p‘ref AND pre‘tr = p‘tr) AND
((p‘ok1 => pre‘ok1) AND pre‘tr1 = p‘tr1 AND pre‘wait1 = p‘wait1 AND pre‘ref1 = p‘ref1)}

Function CSP1 denotes that for each element pre, when the value of pre‘ok is false, its trace shall be
extended, or it remains unchanged. The sequential composition ; in CSP2(P) = P ; ((ok ⇒ ok ′) ∧ tr ′ =
tr ∧ wait ′ = wait ∧ ref ′ = ref ) is explicitly formalised; namely, for each element pre, its undashed variable
value is the same as the undashed variable value of an element from relation P, e.g., pre‘ok = p‘ok, while
its dashed variable value is the same as the dashed variable value from the second program, e.g., ok ′ is
represented by pre‘ok1. Meanwhile, the dashed variable value of an element from relation P is the same as
the undashed variable value in the second program, e.g., ok in the second program is represented by p‘ok1.

Finally, processes in CSP# are defined by satisfying all the healthiness conditions. Our definition of
processes relies on PVS subtyping: process is a subtype of Relation, where function H is the composition
of five healthiness condition functions, and predicate H(P) = P depicts relation P satisfies the condition H.
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H(P): Relation = CSP2(CSP1(R3(R2(R1(P)))))
process: TYPE = {P| H(P) = P}

5.2. The Theories of Expressions and Programs

We present the encoding of program syntax and semantics as below. For simplicity, we omit the encod-
ing of expressions here; the detailed encoding is available online at http://www.comp.nus.edu.sg/~pat/
semantics.zip.

1 % program syntax
2 Prog: Datatype
3 BEGIN
4 skip: skip?
5 abort_prog: abort_prog?
6 assign(x:Vars, exp:Aexp): assign?
7 seq(prog1,prog2: Prog): seq?
8 if_prog(ifcond:Bexp, thn,els:Prog): if?
9 while(whilecond:Bexp, body:Prog): while?

10 END Prog
11 % state relation
12 S_S_abort: TYPE+ = [S, S_abort]
13 Prog_State: TYPE = set[S_S_abort]
14 % type for arithmetic and Boolean expressions
15 S_int: TYPE+ = [S -> int]
16 S_bool: TYPE+ = [S -> bool]
17 % skip
18 skip_ceval: Prog_State = {state:S_S_abort| state‘2 = is_S(state‘1)}
19 %abort_prog
20 abort_ceval: Prog_State = {state:S_S_abort| true}
21 % update
22 update_ceval (x: Vars, v: S_int): Prog_State = {state:S_S_abort|

state‘2 = is_S(state‘1 WITH [(x) := v(state‘1)])}
23 % sequence
24 seq_ceval(s_prog1, s_prog2: Prog_State): Prog_State = {state:S_S_abort|

IF s_prog1(state‘1, abort) THEN state‘2 = abort
ELSE (EXISTS (mid:S): s_prog1(state‘1, is_S(mid)) AND s_prog2(mid,state‘2) ENDIF}

25 % if
26 if_ceval(s_b:S_bool, s_prog1, s_prog2: Prog_State): Prog_State =

{state:S_S_abort|IF s_b(state‘1) THEN s_prog1(state‘1,state‘2)
ELSE s_prog2(state‘1,state‘2) ENDIF}

27 % while
28 while_ceval(s_b:S_bool, s_prog: Prog_State): Prog_State =

mu (lambda (X:Prog_State): if_ceval(s_b, seq_ceval(s_prog, X), skip_ceval))
29 % sequential program semantics
30 ceval(p:Prog): RECURSIVE Prog_State =
31 (CASES p of
32 skip: skip_ceval,
33 abort_prog: abort_ceval,
34 assign(x,exp): update_ceval (x, aeval(exp)),
35 seq(prog1,prog2): seq_ceval(ceval(prog1),ceval(prog2)),
36 if_prog(ifcond,thn,els): if_ceval(beval(ifcond),ceval(thn),ceval(els))
37 while(wcond,bprog): while_ceval(beval(wcond), ceval(bprog))
38 ENDCASES)
39 MEASURE p BY <<

In the above PVS specifications, we define data type Prog to encode the program syntax, data type Aexp
for the syntax of arithmetic expressions, and data type Bexp for the syntax of Boolean expressions. We
further model the program semantics by a recursive function ceval, which uses PVS case construct to
capture different program types in Prog. For example, the evaluation of sequential composition program
(at line 35) is defined by a function seq ceval which returns a set of all possible state pairs state, if
the evaluation of program s prog1 does not terminate under a pre-state state‘1 (captured by predicate
s prog1(state‘1, abort) being true), then the post-state state‘2 is abort representing nontermination
(at line 24), or otherwise, the post-state is the final state after the execution of two sequential programs (at
line 24). Note that the type of mid is S, if it is directly encoded as the output of s prog1, the typechecking

http://www.comp.nus.edu.sg/~pat/semantics.zip
http://www.comp.nus.edu.sg/~pat/semantics.zip
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Operation CSP# PVS

Stop Stop Stop
Skip Skip Skip
event prefixing a → P a >> P
channel output ch!exp → P ch o exp >> P
channel input ch?m → P(m) ch i m >> Pi
data operation prefixing {prog} → P prog >> P
state guard [b]P [||](b,P)
external choice P 2 Q P <> Q
internal choice P u Q P \/ Q
sequential composition P ; Q P ++ Q

hiding P \X1 Hid(P,X1)
parallel P ‖(X1,X2)

Q Par(P, Q)(X1, X2)

interleaving P |||X2
Q Inter(P, Q)(X2)

Table 2. CSP# process syntax

finds an error which is a wrong type of the second argument to s prog1; namely, it expects type S abort
but finds type S, thus we use the constructor to cast the type to be S abort (denoted as is S(mid)).
Here, recursive functions aeval(a: Aexp): RECURSIVE S int at line 34 and beval(b: Bexp): RECURSIVE
S bool at line 36 evaluate arithmetic and Boolean expressions respectively. We encode the semantics of
the while-loop program at line 37 following the existing effort in [PDvHR96]. The recursive function ceval
must terminate, which is specified by the measure expression at line 39. The expression follows the MEASURE
keyword and ends with an order relation << which specifies an irreflexive subterm function/predicate. PVS
generates four termination type correctness conditions (TCCs) and we have discharged the generated proof
obligations.

5.3. The Theory of Processes

PVS has a fixed syntax, and users cannot introduce new symbols. Thus we cannot directly use the standard
CSP# process notations. Instead, we use the existing symbols in PVS, and summarize the standard CSP#
syntax (Section 2.1) and our PVS encoding in Table 2, where X1 is a set of actions of the type Ta, and
process Pi is a parametric process of the type [int -> process]. Note that recursive processes cannot be
directly defined in PVS. We will apply mucalculus theory in PVS to formalising them, and the detailed
formalisation is presented in Section 5.3.12.

5.3.1. Primitives

Following the guideline on how to formalise a relation in PVS (Section 5.1.1), it is straightforward to define
the primitive processes Stop and Skip in PVS, shown as follows. Here, pre is a declared as a variable with
type AB.

pre: VAR AB
Stop: process = H({pre|pre‘ok1 AND pre‘tr1=pre‘tr AND pre‘wait1});
Skip: process = H({pre|(NOT pre‘ok AND pre‘tr<=pre‘tr1) OR

(pre‘ok1 AND pre‘tr1=pre‘tr AND pre‘wait1=pre‘wait)});

5.3.2. Sequential Composition

The semantics of sequential composition P ; Q is defined as the merge of two processes with the value of
dashed observational variables in P being the same as the value of undashed variables in Q . The formalisation
of sequential composition in PVS is defined as follows.

p, q: VAR AB
P, Q: VAR process
equateUndashed(p,q): bool = p‘ok=q‘ok AND p‘wait=q‘wait AND p‘ref=q‘ref AND p‘tr=q‘tr;
equateMiddle(p,q): bool = p‘ok1=q‘ok AND p‘wait1=q‘wait AND p‘ref1=q‘ref AND p‘tr1=q‘tr;
equateDashed(p,q): bool = p‘ok1=q‘ok1 AND p‘wait1=q‘wait1 AND p‘ref1=q‘ref1 AND p‘tr1=q‘tr1;
++(P, Q): process = {pre|EXISTS (p,q: AB): P(p) AND Q(q) AND

equateUndashed(p, pre) AND equateMiddle(p,q) AND equateDashed(q,pre)};
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We define three auxiliary functions to capture the merging operations. Function equateUndashed (p, q)
equates the undashed observational variable values of p to q’s, function equateMiddle(p,q) equates the
dashed observational variable values of p to the undashed ones of q, and function equateDashed(p,q)
equates the dashed observational variable values of p to q’s. In our encoding for sequential composition, for
each element pre, its undashed variable values are the same as the undashed ones of an element p from process
P (captured by equateUndashed(p, pre)), and its dashed variable values are the same as the dashed ones
of an element q from Q (captured by equateDashed(q,pre)). Meanwhile, the dashed variable values of an
element p from P is the same as the undashed ones of an element q from Q (captured by equateMiddle(p,q)).

5.3.3. Event prefixing

The formalisation of event prefixing a >> P contains two parts: first we define a prefixed action Skip(a),
and then compose the action with process P. Variable a is an action with type Ta.

Ta: TYPE
a: VAR Ta
Skip(a): process = H({pre|pre‘ok1 AND

((pre‘wait1 AND NOT pre‘ref1(action(a)) AND pre‘tr1=pre‘tr) OR
(NOT pre‘wait1 AND EXISTS(s:S): (pre‘tr1=snoc(pre‘tr, (s,event(action(a))))))))});

>>(a, P): process = (Skip(a) ++ P);

Here our predefined function snoc appends a pair (s,event(action(a))) consisting of a pre-state and an
event to the end of the list pre‘tr.

5.3.4. Synchronous Channel Output/Input

We first construct three tuples to respectively represent the type of synchronous channel input, output, and
communication. Each tuple consists of three elements: the first is a string denoting a channel name, the
second is a flag denoting the communication type, and the third is a number indicating the message.

% Type for input, output and communication symbol
T_i: TYPE+ = i
T_o: TYPE+ = o
T_m: TYPE+ = m
% Type for channel input, output and communication
Ti: TYPE = [string, T_i, int]
To: TYPE = [string, T_o, int]
Tm: TYPE = [string, T_m, int]

We next encode the syntax of channel input and output into PVS, similar to the way of defining above,
where type Vars denotes variable names (Section 5.1.1) and type Aexp denotes the syntax of arithmetic
expressions (Section 5.2).

% Syntax type for channel output/input/communication
Ti_syntax: TYPE = [string, T i, Vars]
To_syntax: TYPE = [string, T o, Aexp]

Based on the above encoding of event type and syntax definitions, the synchronous channel output is
defined as follows.

1 ch_o_exp: VAR To_syntax %("ch",o,exp)
2 OutC(ch_o_exp): process = H({pre|pre‘ok1 AND
3 ((pre‘wait1 AND FORALL (v:int):(NOT pre‘ref1(input((ch_o_exp‘1,i,v)))) AND pre‘tr1=pre‘tr) OR
4 (NOT pre‘wait1 AND EXISTS(s:S): (pre‘tr1=snoc(pre‘tr,

(s,event(output((ch_o_exp‘1,ch_o_exp‘2,aeval(ch_o_exp‘3)(s)))))))))});
5 >>(ch_o_exp, P): process = (OutC(ch_o_exp) ++ P);

In our proposed denotational semantics, predicate ch? 6∈ ref ′ denotes a process refuses all inputs. Here, we
constrain explicitly that no input is in the refused set (shown at line 3).

Different from the above encoding of synchronous channel output, the formalisation of synchronous
channel input below takes parametric process Pi into account. We model the input prefixing by a set of
observational variable records, where each record is a member of the sequential composition of a channel
input process InC(ch i m, v) and process Pi(v). Value v denotes a possible message. In this way, parametric
process Pi can also be applied to multiple indexed processes, for example, process Pi can be of the type
[int,...,int -> process].
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ch_i_m: VAR Ti_syntax %("ch",i,m)
InC(ch_i_m, v): process = H({pre|pre‘ok1 AND

((pre‘wait1 AND FORALL (v1:int):(NOT pre‘ref1(output((ch i m‘1,o,v1)))) AND pre‘tr1=pre‘tr) OR
(NOT pre‘wait1 AND EXISTS(s:S):(pre‘tr1=snoc(pre‘tr, (s,event(input((ch_i_m‘1,ch_i_m‘2,v))))))))});

>>(ch i m, Pi): process = {pre|EXISTS(v:int):member(pre,(InC(ch i m, v) ++ Pi(v)))};

5.3.5. Data Operation Prefixing

The formalisation of data operation prefixing process prog >> P contains two parts: first we define a data
operation process Data(prog), and then compose the data operation with process P. In our formalisation,
prog is declared as a variable with the sequential program type Prog, ceval is a function for evaluating the
program (formalised in Section 5.2), and ceval(prog)(s,abort) is a predicate capturing that the evaluation
of the program does not terminate (represented by predicate (s,⊥) ∈ C[[prog ]] in the denotational semantics
of data operation prefixing).

prog: VAR Prog
Data(prog): process = H({pre|pre‘ok1 AND EXISTS(s:S):

((pre‘wait1 AND ceval(prog)(s,abort) AND
pre‘tr1=snoc(pre‘tr,(s,state(abort)))) OR

(NOT pre‘wait1 AND NOT ceval(prog)(s,abort) AND
EXISTS(s1:S):(ceval(prog)(s,is_S(s1)) AND pre‘tr1=snoc(pre‘tr,(s,state(is_S(s1))))))

)});
>>(prog, P): process = (Data(prog) ++ P);

5.3.6. Choice

The internal choice indicates that process P u Q behaves like either P or Q .
\/(P, Q): process = {pre|P(pre) OR Q(pre)};

Regarding the external choice of two processes P and Q , if no observation has been made and termination
has not occurred (i.e., indicated by Stop(pre)), then it behaves like the conjunction of P and Q , or otherwise,
it behaves as the disjunction. The formalisation of external choice is shown below.

<>(P, Q): process = H({pre|(Stop(pre) AND P(pre) AND Q(pre)) OR
(NOT Stop(pre) AND (P(pre) OR Q(pre)))});

5.3.7. State Guard

The behaviour of process [b]P is determined by the evaluation of Boolean condition b. The evaluation is
modelled by function g beval, which first checks whether two input traces fulfill an extension relationship
(specified by an overloading function <(t,t1) for trace prefixing at line 3). If no, g beval returns false (at
line 7). Otherwise, g beval evaluates b (beval(b)) under the pre-state of the first element from the extended
trace (specified by (nth((t1-t),0))‘1 at line 6). In our encoding, the PVS predefined function nth returns the
nth element from the trace. For example, nth((t1-t),0) represents the predicate (head(t1− t)) describing
the initial observation on the trace of a process.

Further we define a function PSkip(P) at line 9 to formalise the semantics of a variant process P̂ in
Section 3.3.7 which adds a stuttering step. The state guard process is formalised as function [||](b,P) at
line 10 which indicates that the process behaves as the variant process (represented by PSkip(P)(pre)) if the
guard is satisfied under the pre-state of the initial observation (represented by g beval(b,pre‘tr,pre‘tr1)),
or otherwise it behaves as process Stop (represented by Stop(pre)).

1 b: VAR Bexp
2 t, t1: VAR Trace
3 <(t,t1): bool = EXISTS (t2: Trace):(t2/=null AND t1=append(t,t2));
4 g_beval(b, t, t1): bool =
5 IF <(t,t1) THEN
6 beval (b)((nth(t1-t,0))‘1)
7 ELSE false
8 ENDIF;
9 PSkip(P): process = {pre|P(pre) AND pre‘tr<pre‘tr1 OR

EXISTS (pre1:AB),(s:S):(pre1‘tr1=pre1‘tr AND P(pre1) AND
pre = pre1 with [‘tr1 :=snoc(pre1‘tr,(s,state(is_S(s))))])};
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10 [||](b,P): process = {pre|(g_beval(b,pre‘tr,pre‘tr1) AND pre‘tr<pre‘tr1 AND PSkip(P)(pre))
OR (NOT (g_beval(b,pre‘tr,pre‘tr1) AND pre‘tr<pre‘tr1) AND Stop(pre))};

5.3.8. Parallel Composition

As mentioned in Section 3.3.8, the semantics of parallel composition captures different types of merge. We
model parallel composition in PVS below. Set X1 denotes the common actions of process P and Q , and set
X2 denotes all synchronous channel inputs and outputs of the two processes.

1 P, Q: VAR process
2 Tio: TYPE ={x:RefE|EXISTS(chi:Ti): x=input(chi) OR EXISTS(cho:To): x=output(cho)}
3 X1: VAR set[Ta]
4 X2: VAR set[Tio]
5 Par(P, Q)(X1, X2): process = H({pre|EXISTS (p,q: AB, X1a: set[RefE]): P(p) AND Q(q) AND
6 equateUndashed(pre,p) AND equateUndashed(pre,q) AND
7 pre‘ok1=(p‘ok1 AND q‘ok1) AND pre‘wait1=(p‘wait1 OR q‘wait1) AND
8 pre‘ref1= union(union(inter(inter(p‘ref1,q‘ref1),X2), inter(union(p‘ref1,q‘ref1), X1a)),

(inter(p‘ref1,q‘ref1)-X1a-X2)) AND
9 X1a={x:RefE|EXISTS(a: Ta): X1(a) AND x=action(a)} AND

10 member(pre‘tr1-pre‘tr, tr_syn(p‘tr1-p‘tr, q‘tr1-q‘tr, X1))})
In the above formalisation, the value of an undashed observational variable of the parallel composition is the
same as the counterpart of processes P and Q , captured by auxiliary functions equateUndashed(pre,p) and
equateUndashed(pre,q) defined in Section 5.3.2 at line 6. On the other hand, the dashed variables capture
four kinds of behaviour: 1. the divergence (pre‘ok1=(p‘ok1 AND q‘ok1) at line 7), 2. the termination
(pre‘wait1=(p‘wait1 OR q‘wait1) at line 7), 3. the refusal (at lines 8-9) where we construct a set X1a
whose elements are of the type RefE from the set X1, 4. the trace of the composition is a member of the set
of traces produced by the trace synchronisation function tr syn at line 10.

We remark that the definition of the trace synchronisation function in Section 3.3.8 is composed of
five cases. In PVS, we formalise the definition accordingly. The specification below at lines 4-9 and 12-13
covers the scenarios where one of the traces is an empty trace; we use null to indicate an empty trace.
Line 5 models the result when both traces are empty (case-1 1◦). When one of the trace is not empty,
the result is determined by the first observation of the non-empty trace. For example, lines 7-8 divide the
the first case (case-1 2◦) into two branches depending on whether the observation is an action (checked by
recognisers event? and action?) and the action is in the set X1 (checked by X1(ac(e(se1‘2)))). Line 8
depicts the remaining scenarios where the first observation is not in the set X1, or it is a synchronous channel
input/output/communication or a state transition. Lines 12-13 formalise the definition when the second
trace is empty. Note that we have to formalise all scenarios of the definition of the trace synchronisation
function although the definition in Section 3.3.8 is simplified by imposing the symmetric property.

The specification at lines 15-18 formalises case-2, i.e., communications are over synchronous channels
(checked by the predicates in the if condition at line 15). If the match condition is valid (line 16), there are
two possible behaviours: whether a synchronous channel communication occurs or not at this moment (line
17). Otherwise, line 18 handles the case when the condition is invalid. We define a function chanCheck to
check whether the first observations of two traces are channel inputs/outputs/communications, a function
match to check whether the synchronisation is between one synchronous channel input and a corresponding
output, and a function aux chancom to specify the synchronised channel communication. In particular, the
match(s1, e1, s2, e2) function checks the equivalence of three entities: the pre-states of two input traces
(s1=s2), the channel names (e.g., (co(e1))‘1=(ci(e2))‘1), and the messages through the channel (e.g.,
(co(e1))‘3=(ci(e2))‘3).

e1, e2: VAR E
s1, s2: VAR S
se1: VAR SE
chanCheck(e1, e2): bool = (output?(e1) OR input?(e1) OR chancom?(e1))

AND (output?(e2) OR input?(e2) OR chancom?(e2))
match(s1, e1, s2, e2): bool = s1=s2 AND

(output?(e1) AND input?(e2) AND (co(e1))‘1=(ci(e2))‘1 AND (co(e1))‘3=(ci(e2))‘3 OR
input?(e1) AND output?(e2) AND (ci(e1))‘1=(co(e2))‘1 AND (ci(e1))‘3=(co(e2))‘3)

aux_chancom(se1): set[SE] = {se3:SE|EXISTS(chm:Tm): se3‘1=se1‘1 AND event?(se1‘2) AND
event?(se3‘2) AND chancom?(e(se3‘2)) AND e(se3‘2)=chancom(chm) AND chm‘2=m AND
(output?(e(se1‘2)) AND chm‘1=(co(e(se1‘2)))‘1 AND chm‘3=(co(e(se1‘2)))‘3 OR
input?(e(se1‘2)) AND chm‘1=(ci(e(se1‘2)))‘1 AND chm‘3=(ci(e(se1‘2)))‘3)}
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1 tr1, tr2: VAR Trace
2 tr_syn(tr1, tr2, X1): RECURSIVE set[Trace] =
3 CASES tr1 OF
4 null: CASES tr2 OF
5 null: {t1: Trace|t1=null},
6 cons(se,t2):
7 IF event?(se‘2) AND action?(e(se‘2)) AND X1(ac(e(se‘2))) THEN {t:Trace|t=null}
8 ELSE {t:Trace|EXISTS(l:Trace):t=cons(se,l) AND member(l, tr_syn(tr1,t2,X1))} ENDIF
9 ENDCASES,

10 cons(se1, t1):
11 CASES tr2 OF
12 null: IF event?(se1‘2) AND action?(e(se1‘2)) AND X1(ac(e(se1‘2))) THEN {t1:Trace|t1=null}
13 ELSE {t:Trace|EXISTS(l:Trace): t=cons(se1,l) AND member(l, tr_syn(t1,tr2,X1))} ENDIF,
14 cons(se2, t2):
15 IF event?(se1‘2) AND event?(se2‘2) AND chanCheck((e(se1‘2)), (e(se2‘2))) THEN
16 IF match(se1‘1, e(se1‘2), se2‘1, e(se2‘2)) THEN
17 {t3:Trace|(EXISTS(se3:SE)(l:Trace):member(se3,aux_chancom(se1)) AND t3=cons(se3,l) AND

member(l, tr_syn(t1,t2,X1))) OR (EXISTS(l: Trace): t3=cons(se1,l) AND
member(l,tr_syn(t1,tr2,X1)) OR t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1)))}

18 ELSE {t3:Trace|EXISTS(l: Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1)) OR
t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1))} ENDIF

19 ELSIF event?(se1‘2) AND event?(se2‘2) AND action?(e(se1‘2)) AND action?(e(se2‘2)) THEN
20 IF X1(ac(e(se1‘2))) AND X1(ac(e(se2‘2))) AND (se1‘1 /= se2‘1 OR se1‘2 /= se2‘2) THEN
21 {t1: Trace|t1=null}
22 ELSIF X1(ac(e(se1‘2))) AND X1(ac(e(se2‘2))) AND se1‘1=se2‘1 AND se1‘2=se2‘2 THEN
23 {t3:Trace|EXISTS(l:Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,t2,X1))}
24 ELSIF X1(ac(e(se1‘2))) AND NOT X1(ac(e(se2‘2))) THEN
25 {t3:Trace|EXISTS(l:Trace): t3=cons(se2,l) AND member(l,tr_syn(tr1,t2,X1))}
26 ELSIF NOT X1(ac(e(se1‘2))) AND X1(ac(e(se2‘2))) THEN
27 {t3:Trace|EXISTS(l:Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))}
28 ELSE {t3:Trace|EXISTS(l:Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))) OR

(t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1)))} ENDIF
29 ELSIF state?(se1‘2) AND abort?(s1(se1‘2)) THEN
30 IF state?(se2‘2) AND abort?(s1(se2‘2)) THEN {t3:Trace|t3=tr1 OR t3=tr2}
31 ELSIF event?(se2‘2) AND action?(e(se2‘2)) AND X1(ac(e(se2‘2))) THEN {t3:Trace|t3=tr1}
32 ELSE {t3:Trace|t3=tr1 OR EXISTS(l:Trace):t3=cons(se2,l) AND member(l,tr_syn(tr1,t2,X1))}
33 ENDIF
34 ELSIF state?(se2‘2) AND abort?(s1(se2‘2)) THEN
35 IF state?(se1‘2) AND abort?(s1(se1‘2)) THEN {t3:Trace|t3=tr1 OR t3=tr2}
36 ELSIF event?(se1‘2) AND action?(e(se1‘2)) AND X1(ac(e(se1‘2))) THEN {t3:Trace|t3=tr2}
37 ELSE {t3:Trace|t3=tr2 OR EXISTS(l:Trace):t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))}
38 ENDIF
39 ELSIF condCheck(se1,se2,X1) THEN
40 {t3:Trace|EXISTS(l:Trace): t3=cons(se2,l) AND member(l,tr_syn(tr1,t2,X1))}
41 ELSIF condCheck(se2,se1,X1) THEN
42 {t3:Trace|EXISTS(l:Trace): t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1))}
43 ELSE {t3:Trace|EXISTS(l:Trace): (t3=cons(se1,l) AND member(l,tr_syn(t1,tr2,X1)))

OR (t3=cons(se2,l) AND member(l, tr_syn(tr1,t2,X1)))}
44 ENDIF
45 ENDCASES
46 ENDCASES
47 MEASURE length(tr1)+length(tr2)

When encoding case-3, namely, synchronisation between two actions (line 19), there are four scenarios:
1. both actions are in the set X1 but different or from different pre-states (lines 20-21), 2. actions are the
same and from the same pre-states (lines 22-23), 3. an action is not in X1 (lines 24-27), and 4. both actions
are not in X1 (line 28).

The specification at lines 29-38 covers the scenarios (case-4) where the first observation is in a waiting
state (e.g., state?(se1‘2) AND abort?(s1(se1‘2)) at line 29). Line 30 models the result when the first
observations of both traces are non-terminations (case-4 1◦). When the first observation of the second trace
is not in a waiting state, the result is determined by the first observation of the second trace (case-4 2◦). If
it is an action in X1, the result only contains the non-termination (line 31), or otherwise, either observation
occurs (line 32). The formalisation of the case where the first observation of the second trace is in a waiting
state is similar, specified at lines 34-38.
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When formalising case-5 that a synchronisation is between an action or a state transition and a syn-
chronous channel input/output/communication or a state transition (specified by the auxiliary function
condCheck at lines 39 and 41), two scenarios are considered: if one observation is an action in X1, then its
occurrence is postponed (lines 39-42), or otherwise, either observation occurs (lines 43-44).

se2: VAR SE
condCheck(se1, se2, X1): bool = event?(se1‘2) AND action?(e(se1‘2)) AND X1(ac(e(se1‘2))) AND

(event?(se2‘2) AND (input?(e(se2‘2)) OR output?(e(se2‘2)) OR chancom?(e(se2‘2)))
OR state?(se2‘2) AND is_S?(s1(se2‘2)))

5.3.9. Interleave

The semantics of interleaving process P ||| Q is similar to the semantics of parallel operator, except the set
X which only contains synchronous channel outputs and inputs.

Inter(P, Q)(X2): process = Par(P, Q)(emptyset,X2)

5.3.10. Hiding

In process P \X1, all the occurrence of actions in set X1 are not observed or controlled by the environment.
We formalise the hiding operator as follows.

1 X1: VAR set[Ta]
2 Hid(P,X1): process = H(pre|EXISTS (s:AB, Xa:set[RefE]): P(s) AND equateUndashed(pre,s) AND
3 pre‘ok1=s‘ok1 AND pre‘wait1=s‘wait1 AND pre‘tr1=snoc(pre‘tr, hide(s‘tr1-s‘tr,X1)) AND
4 s‘ref1=union(pre‘ref1, Xa) AND Xa={refa:RefE|EXISTS (a: Ta): X1(a) AND refa = action(a)}) ++ Skip;

The above definition depicts that the behaviour of hiding process is the same as P except the final value
of refusals and traces. Specifically, the refusals are defined as that from P excluding the hiding actions in
X1. Since the refusals has the type set[RefE] and set X1 is of the type set[Ta], we cannot directly use
the set extraction function in PVS. Instead, we construct a set Xa whose elements are of the type RefE and
contains actions in set X1 only (specified by line 4). Auxiliary function equateUndashed(pre,s) defined in
Section 5.3.2 returns true if the values of undashed variables (i.e., ok, wait, trace, and ref) of records pre
and s are the same. To model the actions hiding in a trace, we define a function hide which is a recursive
function over the trace structure.

1 hide(t,X1): RECURSIVE Trace =
2 CASES t OF
3 null: null,
4 cons(x1, x2): (IF event?(x1‘2) AND action?(e(x1‘2)) AND X1(ac(e(x1‘2))) THEN
5 hide(x2,X1)
6 ELSE cons(x1,hide(x2,X1))
7 ENDIF)
8 ENDCASES
9 MEASURE length(t)

Here, we use PVS CASES expressions to discuss two patterns of the trace. If the trace contains an action
from set X1 (specified as event?(x1‘2) AND action?(e(x1‘2)) AND X1(ac(e(x1‘2))) at line 4), then we
remove this action from the trace (specified as hide(x2,X1) at line 5). Otherwise, this trace is unchanged
(specified as cons(x1,hide(x2,X1)) at line 6).

5.3.11. Refinement

We define symbol |> to represent the refinement operator (w) in the following PVS specifications, where the
PVS predefined function subset? checks whether set P is a subset of set Q. Namely, process P refines Q iff
the formalisation P is a subset of Q in our encoding.

|>(P,Q): bool = subset?(P,Q)

5.3.12. Recursion

In CSP#, the semantics of a recursive process is defined using the weakest fixed point, which is the greatest
lower bound of all the fixed points. PVS provides the formalisation of fixed points for sets, but we cannot
directly use it because the process in our calculus is defined as set of constrained object, i.e, healthy predicate.
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Following the mucalculus theory in PVS, we define our own greatest lower bound glb(SX) of any set SX
of processes, whereas monotonic?(F) which checks whether F is a monotonic mapping, and mu(G) which
represents the weakest fixed point given a monotonic mapping G. Nonetheless, the main properties of weakest
fixed point are still valid in our formalisation shown below.

SX: VAR set[process]
X, Y: VAR process
pre: VAR AB

glb(SX): process = H({pre|EXISTS (X: (SX)): X(pre)})
F: VAR [process -> process]
monotonic?(F): bool = FORALL X,Y: X |> Y IMPLIES F(X) |> F(Y)
G: VAR (monotonic?)
mu(G): process = glb({X|X |> G(X)})

closure_mu: LEMMA mu(G) |> G(mu(G))
smallest_closed: LEMMA X |> G(X) IMPLIES X |> mu(G)
fixed_point: LEMMA G(mu(G)) = mu(G)
weakest_fixed_point: LEMMA G(X) = X IMPLIES X |> mu(G)

5.4. Machine-assisted Proof of Properties

So far, we have formalised our denotational semantic model and process semantics in PVS. In this section,
we apply the PVS type checker to validating the consistency of the denotational semantics and the PVS
prover to proving essential laws of our formalisations so as to check the correctness of our encoding.

The type checker in PVS analyses the theory for semantic consistency [OSRSC01]. It usually checks the
semantic constraints, determines the types of expressions, and resolves names. After typechecking, proof
obligations (TCCs) are generated which are mostly related to predicate subtypes and termination in the
recursive definitions. In our work, we have discharged 53 TCCs for the process semantics theory. These
TCCs are mainly from the subtypes requiring that every CSP# process satisfies the healthiness property
and terminations of recursive definitions such as trace synchronisation function.

Based on our semantic formalisation in PVS, we can derive many important properties. We have machine-
assisted proved a set of important laws that are essential in the verification of CSP# programs. Regarding the
properties of healthiness conditions, we have proved that conditions R1, R2, R3, CSP1, and CSP2 are idempotent
and commutative. For example, the following PVS proof script is used to prove the commutativity property
of R1 and CSP1.

R1_CSP1_commutative :

|-------
1 FORALL (P: Relation): CSP1(R1(P)) = R1(CSP1(P))

Rule? (skolem!)
Skolemizing,
this simplifies to:
R1_CSP1_commutative :

|-------
1 CSP1(R1(P!1)) = R1(CSP1(P!1))

Rule? (expand* "CSP1" "R1")
Expanding the definition(s) of (CSP1 R1),
this simplifies to:
R1_CSP1_commutative :

|-------
1 ({pre: AB |

(NOT pre‘ok AND pre‘tr <= pre‘tr1) OR P!1(pre) AND pre‘tr <= pre‘tr1})
=
({pre_1: AB |

((NOT pre_1‘ok AND pre_1‘tr <= pre_1‘tr1) OR P!1(pre_1)) AND pre_1‘tr <= pre_1‘tr1})

Rule? (apply-extensionality :hide? t)
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Applying extensionality,
this simplifies to:
R1_CSP1_commutative :

|-------
1 ((NOT x!1‘ok AND x!1‘tr <= x!1‘tr1) OR P!1(x!1) AND x!1‘tr <= x!1‘tr1)

=
(((NOT x!1‘ok AND x!1‘tr <= x!1‘tr1) OR P!1(x!1)) AND x!1‘tr <= x!1‘tr1)

Rule? (grind)
Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

In the above proof script, command skolem! introduces Skolem constant for the universally quantified
variable P in the lemma, command expand* expands the definitions of CSP1 and R1, command apply-
extensionality :hide? t uses extensionality to prove equality, and command grind installs rewrites and
repeatedly applies simplification.

From these lemmas, we show that our formalisation of condition H is idempotent and every CSP# process
is healthy. We have also proved that some important algebraic laws of CSP# processes: law (guard-3) is
valid; internal choice is commutative and idempotent; etc.

6. Related Work

The denotational semantics of CSP has been defined using two approaches. On one hand, Roscoe [Ros97]
and Hoare [Hoa85] provided a trace model, a stable-failures model and a failures-divergences model for CSP
processes. In the trace model, every process is mapped to a set of traces which capture sequences of event
occurrences during the process execution. In the stable-failures model, every process is mapped to a set of
pairs, and each pair consists of a trace and a refusal. In the failures-divergences model, every process is
mapped to a pair, where one component is a set of traces that can lead to divergent behaviours, and the
other component contains all stable failures which are all pairs, and each pair is in the form of a trace and a
refusal. On the other hand, Hoare and He [HH98] defined a denotational semantics for CSP processes using
the UTP theory. Each process is formalised as a relation between an initial observation and a subsequent
observation; such relations are represented as predicates over observational variables which record process
stability, termination, traces and refusals before or after the observation. Cavalcanti and Woodcock [CW06]
related the UTP theory of CSP to the failures-divergences model of CSP.

The aforementioned denotational semantics for CSP does not deal with data aspects. To solve this prob-
lem, several attempts have been made to provide the denotational semantics for languages which integrate
CSP with state-based notations. For example, Oliveira et al. [OCW09] presented a denotational semantics for
Circus based on a UTP theory. The proposed semantics includes two parts: one is for Circus actions, guarded
commands, etc., and the other is for Circus processes which contain an encapsulated state, a main action,
etc. However, this proposed semantics assumes that the sets of variables in processes shall be disjoint when
those processes run in parallel or interleaving. Qin et al. [QDC03] formalised the denotational semantics of
Timed Communicating Object Z (TCOZ) based on the UTP framework. Their unified semantic model can
deal with channel-based and sensor/actuator-based communications [MD99], although shared variables in
TCOZ are restricted to only sensors/actuators.

There exists some work on shared-variable concurrency. Brooks [Bro96] defined a denotational seman-
tics for a shared-variable parallel language, where the semantic model considers state transitions only, and
thus cannot be directly applied to communicating processes. Zhu et al. [ZBH01] derived a denotational
semantics from the proposed operational semantics for the hardware description language Verilog. In addi-
tion, they [ZHB08] derived the denotational semantics from the algebraic semantics for Verilog to explore
the equivalence of two semantic models. Recently, they [ZYH+12] proposed a probabilistic language PTSC
which integrates probability, time and shared-variable concurrency. The operational semantics of PTSC is
explored and a set of algebraic laws are presented via bisimulation. Furthermore, a denotational semantics us-
ing the UTP approach [ZQHB09] is derived from the algebraic laws based on the head normal form of PTSC
constructs. These semantic models lack expressive power to capture more complicated system behaviours
like channel-based communications.

Besides the above approaches on defining denotational semantics, considerable effort has been made
around the encoding of various CSP models. Camilleri [Cam90] encoded the trace model of CSP and later
a variation of the failures-divergences model [Cam91] into the HOL system [Gor88]. Dutertre and Schnei-
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der [DS97] formalised the trace model of CSP in PVS, tailored to reason about security protocols; Wei and
Heather [WH05] extended this formalisation to the stable-failures model in order to verify liveness prop-
erties. Tej and Wolff [TW97] encoded the failures-divergences model in Isabelle/HOL. Isobe and Roggen-
bach [IR05, IR08] improved this work with tool support from CSP-Prover which handles more CSP models
including trace model, stable-failures model and stable-revivals model [SRI09]. However, all the above for-
malisation of various CSP models lacks the support of complex data.

There exists other research on encoding denotational semantics of integrated languages with CSP. For
example, Oliveira et al. [OCW06] presented the encoding of the UTP semantics of Circus in ProofPower-
Z [Pro]; the formalised semantics is defined using a set-based theory. Moreover, the machine-assisted proof
of various refinement laws was reported in [OCW09]. Wei et al. [WWB09] encoded the UTP semantics of
Timed Circus in PVS, where the formalisation of time operators Delay, Timeout and Deadline was presented.
Our work follows in a similar way of their encoding, but covers the formalisation of sequential programs such
as assignments, sequential composition on shared variables, while Timed Circus supports assignments on
local variables only. Moreover, we formalise different event types covering both event synchronisation and
pairwise handshake through synchronous channels.

This work is also related to research on formalisation of UTP theories. Feliachi et al. [FGW10] formalised a
part of UTP theory in Isabelle/HOL including theories of alphabetised relations and designs. Recently Foster
and Woodcock [FW13] improved the encoding of UTP theory, by defining a unified type for predicates and
supporting more operators and meta-theoretic proofs; their Isabelle/UTP currently only supports theories
of relations and designs, and it lacks the support of more UTP theories like theories of reactive processes
(e.g., healthiness conditions R1, R2 and R3). Nonetheless, Isabelle/UTP provides a platform for encoding
the UTP semantics for specification languages like CSP.

7. Conclusion and Future Work

In this article, we proposed an observation-oriented semantics for the CSP# language based on the UTP
framework. The formalised semantics covers different types of concurrency, i.e., communications and shared
variable parallelism. In addition, a set of algebraic laws were proposed based on the denotational model
for communicating processes involving shared variables. Furthermore, we encoded the proposed semantics
into the PVS theorem prover. The consistency of encoded semantics was validated by proving the TCCs
generated from typechecking. Based on the encoding, we also proved properties of healthiness conditions and
algebraic laws related to process definitions in PVS.

There are several directions of the future work. One direction is to extend our proposed denotational
semantic model to cover more system behaviours such as timed aspects and probability [SLS+11, DSC+15,
SLH+17]; for example, Stateful Timed CSP [SLD+13] extends CSP# with time process constructs like
timeout and deadline. Another direction is to enhance our verification framework by validating more complex
theories (e.g., monotonicity property and algebraic laws in Section 4), and further to apply our framework to
verifying real-world case studies, especially systems of infinite states, by leveraging the induction technique
which complements model checking techniques.
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