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ABSTRACT
Simulink is an industrial de-facto standard for building ex-
ecutable models of embedded systems and their environ-
ments, facilitating validation by simulation. Due to the
inherent incompleteness of this form of system validation,
complementing simulation by formal verification would be
desirable. A prerequisite for such an approach is a formal
semantics of Simulink’s graphical models. In this paper, we
show how to encode Simulink diagrams into Hybrid CSP
(HCSP), a formal modelling language encoding hybrid sys-
tem dynamics by means of an extension of CSP. The transla-
tion from Simulink to HCSP is fully automatic. We further-
more discuss how to utilize a Hybrid Hoare Logic Prover to
verify the translated HCSP models. We demonstrate our ap-
proach on a combined scenario originating from the Chinese
High-speed Train Control System at Level 3 (CTCS-3).

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; I.6.4 [Simulation and Modeling]: Model Valida-
tion and Analysis

General Terms
Formal methods, Language transformation, Verification
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1. INTRODUCTION
Simulink (www.mathworks.com/products/simulink/) is an

environment for the model-based analysis and design of signal-
processing systems and embedded control systems. Being
based on a large palette of individually simple function blocks
and on their composition by continuous-time synchronous
data-flow, it offers an intuitive graphical modeling language
reminiscent of circuit diagrams and thus appealing to the
practicing engineer. As the circuit analogy renders rea-
soning about large numbers of concurrently operating, in-
tertwined signal paths relatively easy —compared to, e.g.,
programming-like notations—, Simulink-based modeling, anal-
ysis, and design has become a de-facto standard in the em-
bedded systems industry. Abstracting from the necessary
iterations for bug fixing, a prototypical design flow here in-
volves (1.) building the model of environment and embedded
system (ES) functionality over abstract (mostly continuous)
time, (2.) simulating the model, (3.) analyzing the sim-
ulation results, (4.) refining the time model of the ES by
adding sampling times, phase delays, (de-)activation con-
ditions, etc., (5.) redoing simulation and interpretation of
simulation results, (6.) code generation and deployment, in-
volving decisions on the actual amount of concurrency to be
employed.

As analysis and validation within this flow is primarily
based on simulation, Simulink offers a comprehensive range
of numerical simulation algorithms, reflecting different com-
promises between system classes tackled, accuracy, and per-
formance. Nevertheless, all of them are prone to the limi-
tations of validation by (classical, i.e. unverified) numerical
simulation, which are the intrinsically incomplete coverage
of open systems and the possible unsoundness of analysis
results due to numerical error. Statistical model checking
(SMC, cf. e.g. [5]) deals with the first problem by means of
a rigorous statistical interpretation of the simulation results
without, however, addressing the soundness issue of numer-
ical simulation. The latter could in principle be resolved by
set-based verified simulation, but methods dealing with non-
smooth derivatives, as frequently encountered in Simulink
models, are only emerging [14] and far from able to cover
realistic Simulink models. Furthermore, their performance,
both wrt. runtime of simulation and conclusiveness of the
conservatively overapproximate, set-valued results obtained,
are likely to become prohibitive in an SMC context, leaving
the issue of open systems unresolved.

The only technique currently being able to reconcile the
above two issues is formal verification. The usual approach



here is to translate Simulink into the input language of a for-
mal verification tool for hybrid discrete-continuous systems,
be it an automaton-based language [2] or a symbolic descrip-
tion [8], and employ the corresponding verification engines.
These engines pursue an exhaustive search of the state space,
thus providing certificates which cover all input stimuli pos-
sible in an open system, and do increasingly apply verified
arithmetic, rendering them resistant against numerical error.
Given Simulink’s modeling paradigm of connecting numer-
ous concurrently executing small blocks via continuous-time
synchronous dataflow, the translated models are generally
characterized by tightly coupled, fine-granular concurrency,
which unfortunately is detrimental to analyzability.

In this paper, we do therefore investigate translation of
Simulink into a process calculus with its richer set of compo-
sition primitives. We present an encoding of Simulink’s se-
mantics in terms of HCSP [10], a formal modelling language
encoding hybrid system dynamics by means of an extension
of CSP [9]. As analysis of HCSP models is supported by
the interactive verification tool Hybrid Hoare Logic Prover,
this provides a gateway to mechanized verification, which
we demonstrate on a combined scenario originating from the
Chinese High-speed Control System at Level 3 (CTCS-3).

Related Work.
There have been a range of work on translating Simulink

into other modelling formalisms, for which analysis and veri-
fication tools are being developed. Tripakis et al [16] present
an algorithm of translating discrete-time Simulink models
to Lustre, a synchronous language developed with formal
semantics and a number of tools for validation and anal-
ysis. Cavalcanti et al [3] present a semantics for discrete-
time Simulink diagrams using Circus, a combination of Z
and CSP. Meenakshi et al [12] present an algorithm that
translates a subset of Simulink into input language of model
checker NuSMV. Among all the works mentioned above,
continuous time models of Simulink are not considered. The
most related work by Chen et al [4], translates Simulink
models to a real-time specification language Timed Interval
Calculus (TIC), which can directly represent and analyze
continuous Simulink diagrams, and to the end, validates TIC
models by a theorem prover. However, the translation is lim-
ited as it can only handle continuous blocks whose outputs
can be represented explicitly by a mathematical relation on
inputs. Our approach can handle all continuous blocks by
using the notion of differential equations and invariants; and
on the other hand, our target language is a process language,
with more intuitivity and compositionality in both construc-
tion and verification.

A Simulink model can include a stateflow block, which re-
acts to events triggered in the Simulink model and changes
the states accordingly. The formalization of such Simulink/S-
tateflow models has also been studied recently. Hamon et
al [6] propose an operational semantics of Stateflow, which
serves as a foundation for developing tools for formal analy-
sis of Stateflow designs. As mentioned previously, Agrawal
et al [2] propose a method to translated Simulink/State-
flow models in to hybrid automata using graph translation.
The target models represented by hybrid automata can then
be submitted to related model checkers for formal analy-
sis and verification, and thus get involved with the state
space exploration. Tiwari [15] describes the formal seman-
tics of Stateflow using communicating pushdown automata,

for which differential equations for representing continuous
are discretized by difference equations.

The rest of this paper is organized as follows: Sec. 2 in-
troduces Simulink, HCSP, and Hybrid Hoare Logic with its
prover; Sec. 3 and Sec. 4 present our algorithms for translat-
ing Simulink to HCSP, and the implementation respectively;
Sec. 5 illustrates our approach by modelling and verifying a
combined scenario of CTCS-3; Finally, Sec. 6 draws the con-
clusion and the future work.

2. SIMULINK AND HYBRID CSP
In this section, we introduce Simulink, HCSP, Hybrid

Hoare Logic (HHL) and its prover. For Simulink, we high-
light those features that are relevant to this work, and for
more details please refer to [1].

2.1 Simulink
A Simulink model contains a set of blocks, subsystems,

and wires, where blocks and subsystems cooperate by send-
ing messages through the wires between them. Figure 1 gives
a Simulink model of train movement, where rounded rect-
angles a in, v out, and s out are in-ports and out-ports for
sub-systems, and represent the acceleration, velocity, and
trajectory of the train respectively. The two rectangular
blocks v and s are integrator blocks of the Simulink library,
each of which contains a parameter to represent the initial
value of the output. An integrator block outputs its initial
value at the beginning and the integration of the input signal
afterwards. Hence, the block v outputs the velocity of the
train, which is the integration of the input acceleration a in;
and on the other hand, the block s outputs the trajectory of
the train, which is the integration of the input velocity v.
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Figure 1: The plant of a train control system

An elementary block gets input signals and computes the
output signals. However, to make Simulink more useful,
almost every block in Simulink contains some user-defined
parameters to alter its functionalities. One typical param-
eter is sample time which defines how frequently the com-
putation is taken. Two special values, 0 and −1, may be
set for sample time, where the sample time 0 indicates that
the block is used for simulating the physical environment
and hence computes continuously, and −1 signifies that the
sample time of the block is not determined yet. The case
when sample time is −1 will be discussed in Sec. 3.2.1, and
therefore, from now on, we assume that the sample time is
not equal to −1. Thus, blocks are classified into two cate-
gories, i.e., continuous and discrete, according to their sam-
ple times.

Blocks and subsystems in a Simulink model receive inputs
and compute outputs in parallel, and wires specify the data
flow between blocks. Meanwhile, computation conducted in
a block takes no time and the computed output is delivered
immediately to its receiver. Therefore, if we consider each
block as a predicate relating inputs to outputs, the behavior



of the whole diagram is simply specified by the conjunction
of the predicates of all the blocks in the diagram. To make
this idea clear, several basic rules of Simulink need to be
given.

• Logical loops among discrete blocks (except for delay
blocks that output the past value of a signal) are not
allowed. This rule prevents the zeno phenomena, i.e.
a sequence of infinite many computations that take no
time.

• The outputs of a block purely depend on the inputs
and parameters set by users. Hence, the outputs of a
block are never used to determine its own outputs. For
instance, x := x+ 1 is not implementable in Simulink.
However, y := x + 1 can be easily implemented in
Simulink. (This rule can be seen as a special case of
the previous one.)

Because of the rules mentioned above, each signal for a
wire in a diagram can be specified by a timed trace which is
a function from time domain (modeled as non-negative reals
R≥0) to the respective values.

The behavior of each block can be divided into a set of sub-
behaviors, each of which is guarded by a condition. More-
over, these guards are exclusive and complete, i.e., the con-
junction of any two of these guards is unsatisfiable and the
disjunction of all of them is valid. So, each sub-behavior
can be further specified as a predicate over input and out-
put signals. For example, a kind of blocks named ‘Switch’ in
Simulink has three input signals received from in-ports 1, 2,
3 respectively and one output signal. The input signal at in-
port 2 is a boolean condition, and when it is true, the output
signal will be equal to the input signal at in-port 1, other-
wise the one at in-port 3. Hence, blocks can be interpreted
by the following semantic function SemanB :

SemanB(init, ps) =̂ out(0) = init ∧
m∧

k=1

(Bk(ps, in)⇒ Pk(ps, in, out)), (1)

where init stands for the initial output value set by user,
ps are the user-set parameters that may change the func-
tion of the block, in and out are resp. the timed traces
corresponding to input and output signals, out(0) is the
value of out at the time 0. In the definition we assume
that the block’s behavior is split into m cases by Bk and
in each case the behavior is specified by the correspond-
ing predicate Pk. Obviously,

∨m
k=1 Bk(ps, in) ⇔ True, and

Bi(ps, in) ∧Bj(ps, in)⇔ False for any i 6= j, always hold.
Notice that different types of blocks, i.e. continuous and

discrete blocks, have different definitions for Bk and Pk be-
cause the input signals for discrete blocks only refer to the
value of the closest sample time point, i.e. the value of input
signals at time t should refer to the time (t − (t mod st))
where st represents the sample time of the block.

So, the semantics of a Simulink diagram is defined by

SemanD =̂

n∧
j=1

SemanB(initj , psj) , (2)

where n is the number of blocks in the diagram, initj and
psj are the initial output value and parameters of the j-th
block.

2.2 Hybrid CSP (HCSP)
HCSP [7, 19, 17] is a formal language for describing hy-

brid systems, which is an extension of CSP by introducing
timing constructs, interrupts, and differential equations for
representing continuous evolution. Exchanging data among
processes is described solely by communications, no shared
variable is allowed between different processes in parallel, so
each program variable is local to the respective sequential
component. We write V and Σ for the sets of variables and
channel names, respectively. The syntax of HCSP is given
as follows:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P tQ | P ∗
| 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉� 8i∈I(ioi → Qi)

S ::= P | S‖S

Here ioi stands for a communication event, i.e., either
ch?x or ch!e, P,Q,Qi are HCSP processes, x and s stand
for variables, and ch for channel name. B and e are
Boolean and arithmetic expressions and d is a non-negative
real constant.

The intended meaning of the individual constructs is as
follows:

• skip, x := e, ch?x, ch!e and P ;Q can be understood
in a standard way.

• B → P behaves as P if B is true, otherwise it termi-
nates immediately.

• P tQ denotes internal choice. It behaves as either P
or Q, and the choice is made by the process.

• The repetition P ∗ executes P for some finite number
of times.

• 〈F(ṡ, s) = 0&B〉 is the continuous evolution statement
(hereafter shortly continuous). It forces the vector s
of real variables to continuously evolve according to
the differential equations F 1 as long as the boolean
expression B, which defines the domain of s, holds,
and terminates whenever B turns false.

• 〈F(ṡ, s) = 0&B〉�8i∈I(ioi → Qi) behaves like 〈F(ṡ, s) =
0&B〉, except that the continuous is preempted as soon
as one of the communications ioi occurs. That is fol-
lowed by the respective Qi. However, if the continuous
part terminates before a communication from among
{ioi}i∈I occurs, then the process terminates directly.

• P‖Q behaves as if P and Q run independently except
that all communications along the common channels
connecting P and Q are to be synchronized. The
processes P and Q in parallel can share neither vari-
ables, nor input nor output channels.

The other constructs of HCSP in [7, 19] are derivable from

the above syntax, e.g., wait d
def
= t := 0; 〈ṫ = 1&t < d〉,

stop
def
= t := 0; 〈ṫ = 1&true〉, 8i∈I(ioi → Qi)

def
= stop �

8i∈I(ioi → Qi), and the timeout 〈F(ṡ, s) = 0&B〉�d Q can
be defined by t := 0; 〈F (ṡ, s) = 0 ∧ ṫ = 1&t < d ∧ B〉; t ≥
d→ Q.

1The differential equations are written in sequence and sep-
arated by comma.



2.3 Hybrid Hoare Logic (HHL)
We extend Hoare Logic to hybrid systems, by adding his-

tory formulas to describe continuous properties held through-
out the whole execution interval of HCSP processes. The
history formulas are defined by duration calculus (DC), which
is a real extension of Interval Temporal Logic (ITL) [13] for
specifying and reasoning about real-time systems. Like ITL,
the only modality in DC is the chop _ to divide a considered
interval into two consecutive sub-intervals such that its first
operand is satisfied on the first sub-interval, while the sec-
ond operand is satisfied on the second sub-interval. Besides,
DC extends ITL by introducing durations of state expres-
sions

∫
S, and the temporal variable ` to denote the length

of the considered interval, i.e.
∫
1. Here, we will adopt the

notion of point formula introduced in [18], denoted by dSe0,
to mean that S holds at the considered point interval. Then
the formula dSe is defined as ` > 0∧¬(` > 0_d¬Se0_` > 0),
meaning that the state expression S holds at each point of
the reference interval which is not a point interval.

In [10], we have defined an extension of Hoare logic for
specifying and reasoning about HCSP processes, i.e. HHL.
Each specification for a sequential process P takes the form
{Pre}P {Post; HF}, where Pre,Post represent pre-/post-conditions,
expressed by first-order logic, to specify properties of vari-
ables held at starting and termination of the execution of
P ; and HF history formula, expressed by DC, to record the
execution history of P , including real-time and continuous
properties. The effect of discrete processes will be specified
by the pre-/post-conditions, but not be recorded in the his-
tory. The specification for a parallel process is then defined
by assigning to each sequential component of it the respec-
tive pre-/post-conditions and history formula, that is

{Pre1,Pre2}P1‖P2 {Post1,Post2; HF1,HF2}

In HHL, each of HCSP constructs is axiomatized by a set of
axioms and inference rules, for example, the continuous is
axiomatized by the following rule:

Init ⇒ Inv

{Init ∧ Pre}〈F (ṡ, s) = 0 &B〉{Pre ∧Cl(Inv) ∧Cl(¬B);
(l = 0) ∨ dInv ∧ Pre ∧Be}

where Init stands for the initial condition on continuous vari-
ables, Inv is a continuous invariant corresponding to the dy-
namical system2, Cl(G) stands for the closure of G, e.g.
when G is constructed by polynomial inequalities through ∧
and ∨, Cl(G) can be obtained from G by replacing < (and
>) with ≤ (and ≥) in G. Pre does not contain s, and l = 0
in the history is to record the behaviour when the initial
values satisfy ¬B at very beginning. The full explanation of
HHL can be found in [10, 17].

2.3.1 HHL Prover
For tool support, we have mechanized the verification ar-

chitecture of HCSP specifications based on deductive rea-
soning, and implemented a theorem prover for HHL [20] in
proof assistant Isabelle/HOL. By applying the prover, we
can verify if an HCSP process is correct with respect to a
specification written in HHL in a machine checkable way.

The mechanization in a proof assistant adopts the general
approach: first, encode the process language (i.e. HCSP),

2Please refer to [11] for the details of continuous invariants
of dynamical systems.

assertion languages (i.e. first-order logic and DC), and then
the specification logic (i.e. HHL) in Isabelle/HOL; second,
based on the proof system of HHL, design a verification con-
dition generator, which reduces an annotated HCSP process
to a verification condition, a combination of first-order for-
mula and a DC formula, that is valid if the original HCSP
process conforms to the annotated assertions, i.e. the spec-
ification; finally, check the validity of the verification con-
dition, which can be proved either by interactive theorem
proving in Isabelle/HOL, or by automated theorem proving
for its decidable fragments. The current version of the HHL
prover mainly focuses on the interactive approach.

We illustrate how to use the HHL prover by verifying a
simple process that models train movement. Let s be trajec-
tory, v velocity, a acceleration, and vmax the speed limit of
the train respectively. As modelled by the following process

〈ṡ = v, v̇ = a&v <= vmax〉

the train moves with velocity v and acceleration a, but with
constraint v <= vmax always holds. Denote the encoding
of this process in HHL prover by train_part, we can prove
easily a lemma, which claims that starting with initial veloc-
ity 0 and positive acceleration a, the train will always move
with velocity within [0, vmax]:

lemma: {v = 0 ∧ a > 0} train part {0<v<=vmax,
high (0<=v<=vmax)}

by (continuous theorem)
by (FOL axiom)∗

by (DC axiom)∗

done

where high (S) encodes dSe. The proof can be divided to
three steps: first, apply the axiom continuous_theorem that
corresponds to the application of continuous rule presented
in the previous part, and as a result, the specification to be
proved is reduced to a first-order formula and a DC formula;
then secondly and thirdly, prove the validity of the two log-
ical formulas by applying a sequence of axioms of first-order
logic and DC respectively, which we have already encoded
in HHL prover.

3. FROM SIMULINK TO HCSP
In this section, we consider how to define a formal seman-

tics for Simulink by encoding it into HCSP.

3.1 Translating Blocks
From the semantics we discussed in Sec.2.1, Simulink blocks

behave as a formula of the form (1), but the definitions
Bk and Pk for continuous and discrete blocks are different.
Therefore, we encode continuous and discrete blocks into
two different process patterns.

Regarding a continuous block, its initialization is simply
encoded as an assignment. A continuous block uses its Bks
as a partition of the whole state space, and continuously
evolves following some differential equation Fk subject to
the corresponding formula Bk. During the continuous evo-
lution, the block is always ready for receiving new signals
from in-ports, and sending the respective signals to out-
ports (represented by ioi). Based on the continuous sample
time, the blocks which receive signals from the continuous
block via out-ports can always get the latest values. So, a
continuous block can be encoded into the following process
pattern:



PC(init, ps) =̂ out := init;P ∗

P =̂ 〈F1( ˙out, out, in, ps) = 0&B1(in, ps)〉� 8i∈I(ioi → skip);
. . . ;
〈Fm( ˙out, out, in, ps) = 0&Bm(in, ps)〉� 8i∈I(ioi → skip)

Given a continuous block cb with the above structure, we
define getInit(cb) and getComms(cb) to represent the initial
process out := init and the communications {ioi}i∈I respec-
tively; and getDiffs(cb) to represent the set of differential
equations occurring in cb.

For a discrete block, its initialization is also encoded as an
assignment. However, a discrete block with sample time st
only computes output signals at the time points whose values
minus the initial time are divided by st, i.e. once every st
time units. At the beginning of each period, it updates the
input signal by receiving a new one from in-port, and after
the computation, sends the new produced output signal to
the out-port. Thus, the blocks which receive signals from the
discrete block can always get the values of the last nearest
period. Finally, a discrete block can be encoded as follows:

PD(init, ps, n) =̂ out := init;P ∗

P =̂ cin?in;Pcomp; cout!out; wait st
Pcomp =̂ B1(in, ps)→ Pcomp1(in, out, ps);

...;
Bm(in, ps)→ Pcompm(in, out, ps)

Given a discrete block db with the above structure, we de-
fine getInit(db) similar as continuous; and getCin, getCout
to represent the input cin?in and output cout!out respec-
tively; and db.st, db.comp to represent the sample time st
and computation process respectively.

3.2 Translating Diagrams
This section presents our algorithms for translating Simulink

diagrams, including discrete diagrams, continuous diagrams,
and arbitrary diagrams constructed out of them. Before giv-
ing the translation, some notations and basic pre-processing
of diagrams are introduced first.

3.2.1 Computing inherited Sample Times
A Simulink diagram may contain blocks with unspecified

sample time, which is called inherited and is indicated with
value −1. An inherited sample time of a block is determined
when the sample times of all the input signals of the block
are known, and then it is computed as the greatest common
divisor (GCD) of the sample times of these input signals.

Algorithm 1 Computing inherited sample times

Require: A diagram diag
Ensure: Calculate all determined sample times in diag
1: for (flag← true; flag; skip) do
2: flag← false;
3: for all b in diag do
4: if !known(b) ∧ allKnown(b.srcBlocks()) then
5: b.st← GCD(b.srcBlocks());
6: flag← true;
7: end if
8: end for
9: end for

Algorithm 1 calculates the sample times of all the blocks
of a given diagram recursively and terminates when all of

the determined ones are known. Specially, function known
checks whether the sample time of a block is known or not,
and allKonwn checks whether the sample times of all input
signals of the block in consideration are known or not. From
now on, we only consider diagram for which the sample time
of any block has been them is computed and thus known.

3.2.2 Translating Wires
In general, wires in Simulink diagrams can be considered

as a special form of signals, and thus can be represented as
variables. On the other hand, as seen from below, when a
diagram is partitioned into a set of sub-diagrams, we will
model each wire between any two sub-diagrams as a pair of
input and output channels for transmitting values.

3.2.3 Separating Diagrams
We introduce the most important step in the translation

of a Simulink diagram: separating the diagram to a set of
connected sub-diagrams. We classify wires to three different
kinds and then partition a diagram according to the fol-
lowing strategy: (1) Wires between continuous blocks are
modelled as shared variables, and hence, the two continu-
ous blocks are put into one partition; (2) Wires between a
continuous block and a discrete block are modelled as chan-
nels, and thus, these two blocks are put into two disjoint
partitions, and will transmit values via the channels; (3)
Wires between discrete blocks are hard to model because
the control represented by the blocks may be centralized or
distributed. In our approach, a control is assumed as cen-
tralized by default, and in this case, the wires between the
discrete blocks are modelled as shared variables; and there-
fore, the two blocks are put in one partition. The general
case in which the user options for control are allowed will be
discussed in subsection 3.2.7.

Algorithm 2 Separating diagrams

Require: A diagram diag
Ensure: Return a partition partition of the diagram
1: new partition
2: for all block in diag do
3: if !visited(block) then
4: new scc; scc.add(block); setVisited(block);
5: new bs; bs.add(block);
6: while !bs.empty() do
7: b← bs.top();
8: for all cb in b.getConBlocks() do
9: if isShared(b, cb)∧!scc.contains(cb) then

10: bs.add(cb); scc.add(cb); setVisited(cb);
11: end if
12: end for
13: bs.remove();
14: end while
15: partition.add(scc);
16: end if
17: end for

Algorithm 2 is given according to the strategy presented
above. At the beginning, an empty list partition is allocated.
Then the algorithm applies depth-first search to find out all
connected components with the same type as a partition
recursively. Thus, for each block block that has not been
visited yet, a list scc is allocated to store the names of blocks
of the whole connected sub-diagram that is reachable from



block. It first adds block to a local list bs and sets this block
visited. If bs is not empty, then pops the top element from bs
to b; then for any unvisited block cb that is connected to b,
if the wires between cb and b are shared variables, denoted
by isShared, then according to our strategy, we put cb to
the same partition as b, and set cb as visited; after all the
connected blocks of b are visited, b is removed from bs and
the new top element of bs will be considered recursively, till
bs becomes empty. Finally, scc is added into partition, and
another unvisited block starts recursively, till all the blocks
of the diagram are visited.

On termination, each element of partition is a list of names
of connected blocks with the same type.

3.2.4 Translating Continuous Diagrams

Algorithm 3 Translating continuous diagrams

Require: A continuous diagram diag
Ensure: Return an HCSP process proc
1: init.setEmpty(); comms.setEmpty()
2: for all block in diag do
3: init← init # getInit(block)
4: comms← comms ∪ getComms(block)
5: end for
6: procR.setEmpty()
7: newDiffs← Cartesian(diag.getDiffs())
8: for all (dq, b) in newDiffs do
9: procR← procR # 〈dq&b〉� 8io∈commsio→ skip

10: end for
11: proc← init # (procR)∗

Algorithm 3 translates a continuous diagram to an HCSP
process, which is represented by a string here. We introduce
two variables init and comms to represent the initial process
and the interrupting communications of the final HCSP pro-
cess respectively. At the beginning, both of them are set to
be empty strings. For any continuous block of this diagram,
we extract its initial process and interrupting communica-
tions by using getInit() and getComms() defined in Sec. 3.1
respectively. Because the variables and input/output chan-
nels of different continuous blocks are disjoint, the initial
process and communications of the whole process can be
defined by sequential composition and the union of those of
all blocks, both represented in lines 3 and 4. To distin-
guish from the sequential composition of HCSP, we write #
to stand for sequential composition in algorithms.

We then construct the process procR for repetition. The
function getDiffs(diag) returns the tuple consisting of the
sets of differential equations of all blocks in diag. The set of
differential equations for the diagram can then be defined as
the Cartesian of the tuple. For instances, assume there are
two blocks and the sets of differential equations of them are
{f1&b1, f2&b2} and {g1&c1, g2&c2} resp., then

Cartesian({f1&b1, f2&b2}, {g1&c1, g2&c2}) def
=

{f1g1&b1 ∧ c1, f1g2&b1 ∧ c2, f2g1&b2 ∧ c1, f2g2&b2 ∧ c2}

For each differential equation in the resulting Cartesian set,
we add the interrupting communications to it in line 9. The
process procR can finally be defined as the sequential com-
position of all differential equations with interrupting com-
munications.

3.2.5 Translating Discrete Diagrams

Algorithm 4 Translating discrete diagrams

Require: A discrete diagram diag
Ensure: Return an HCSP process proc
1: odiag← order(diag); init.setEmpty();
2: cin.setEmpty(); cout.setEmpty();
3: for all block in odiag do
4: init← init # getInit(block)
5: cin← cin # getCin(block)
6: cout← cout # getCout(block)
7: end for
8: bc← GCD(odiag.getst())
9: procR.setEmpty()

10: for all block in odiag do
11: procR← (procR # (block.st | t→ block.comp))
12: end for
13: procR← cin # procR # cout
14: procR← procR # (temp := t) # 〈ṫ = 1&t < temp + bc〉
15: proc← init # (t := 0) # (procR)∗

Algorithm 4 translates a discrete diagram to an HCSP
process. Based on the restriction that there is no logic loop
of discrete blocks, thus we can find an order of discrete blocks
of the diagram such that a block can only rely on the blocks
prior to it. The ordered blocks are denoted by odiag. We
introduce init, cin and cout to represent the initial process,
the input and output of the final HCSP process respectively.
All of them are initialized to be empty, and calculated as the
sequential composition of those of the blocks in odiag respec-
tively in line 3-7. We use bc to represent the sample time
of the final process, and is defined as the greatest common
divisor of the sample times of all blocks.

We then construct the process procR by repetition, which
will be taken every bc time units. Starting from time temp
(whose value in the first period is 0), for all blocks block,
if the time t is divided by the sample time of block, repre-
sented by (block.st | t), then the computation of block, i.e.
block.comp will be performed in this period. Finally, we
reach the process procR by adding input and output pro-
cesses before and after the computation respectively.

3.2.6 Translating Subsystems
So far we have presented the translation of Simulink di-

agrams. In this section, we will define how to translate
Simulink subsystems, that are composed of a set of blocks,
diagrams, and other subsystems. The subsystems can be
classified to three different types: normal subsystems, trig-
gered subsystems, and enabled subsystems. For simplifying
the presentation, we consider the un-nested subsystems, i.e.
the ones which do not contain other subsystems inside. The
nested subsystems can be translated by applying the follow-
ing methods recursively.

A. Normal subsystems.

We call subsystems that contain neither triggered nor en-
abled blocks inside as normal subsystems. For this case,
we flatten the subsystem directly by connecting the in-ports
and out-ports attached to it to the corresponding in-ports
and out-ports attached to the blocks inside it. The sub-
system plus the outside blocks connected to it will then be



translated to a diagram, the translation of which has been
presented above.

B. Triggered subsystems.

A triggered subsystem contains a triggered block inside
it, and meanwhile, there is a corresponding input trigger-
ing signal targeting at the subsystem. The sample times
of all the other input signals of the subsystem are equal to
the one of the triggering signal. All the blocks except for
the triggered block (called as normal blocks hereafter) in-
side the subsystem have unspecified sample time -1. They
constitute a diagram, and will be activated by the trigger
events. According to the change of the triggering signal,
there are three types of trigger events: the rising, falling
and changing of the sign of the triggering signal. Whenever
a trigger event occurs, all the normal blocks inside the sub-
system will be performed once. We flatten the rest of the
triggered subsystem except for the triggering signal and the
triggered block, and then apply Algorithm 4 to translate the
resulting diagram, but with a little modification to line 13 as
shown below, and finally reach the process for the triggered
subsystem:

procR← tri? # cin # procR # cout

where tri represents the input triggering signal, indicating
that the computation of the subsystem will be activated by
signal tri? from outside, not periodically as normal since
bc = −1 here.

The next step is to define the outside block that outputs
the triggering signal. When the block is discrete, firstly,
we do not consider the wire connecting the block and the
triggered subsystem, i.e. the one transmitting the triggering
signal, then according to our method proposed in Sec. 3.1,
we can construct the process for the block and suppose that
it has the structure as in Sec. 3.1; secondly, we define a new
computation to be the following one:

osig := outtri;Pcomp;Btri(osig, outtri)→ tri!

That means, we introduce a variable osig to record the out-
put signal of last period at the beginning (here outtri is used
to represent the triggering signal); then after a computation
of the block is performed, we compare the old signal osig
and the new output signal outtri. If they satisfy the con-
dition Btri for triggering an event, then a triggering event
tri! occurs. The definition of Btri depends on the triggering
type, for instance, if the triggering signal is rising,

Btri(osig, outtri)=̂ osig < 0 ∧ outtri ≥ 0 ∨
osig ≤ 0 ∧ outtri > 0

When the block that outputs the triggering signal is con-
tinuous, similar to the discrete case, we construct the process
for the continuous output block and suppose it has the struc-
ture as defined in Sec. 3.1. Then, we modify the differential
equation part of the process as follows:

〈F1( ˙out, out) = 0&B1 ∧ ¬Btri〉� · · · ;
· · ·
〈Fm( ˙out, out) = 0&Bm ∧ ¬Btri〉� · · · ;

Btri → tri!;

〈F1( ˙out, out) = 0&B1 ∧Btri〉� · · · ;
· · ·
〈Fm( ˙out, out) = 0&Bm ∧Btri〉� · · ·

where Btri defines the condition for occurring a trigger event,
in particular for the rising case, it can be defined as outtri =
0∧ ˙outtri > 0, i.e. the value of the output signal is 0 and its
first derivative is greater than 0. As soon as Btri holds, the
event tri! occurs, and then the process continuously evolves
according to the differential equations of the block, till next
time the trigger event occurs, when Btri turns from false to
true again.

C. Enabled subsystems.

An enabled subsystem contains an enabled block inside
it, and meanwhile, there is a corresponding input enabling
signal targeting at the subsystem. The blocks except for the
enabled block (i.e. normal blocks) inside the enabled subsys-
tem can be continuous or discrete, and whenever the input
signal is greater than 0, they will be activated. In the follow-
ing, to avoid unnecessary complication or even unexpected
behavior of enabled subsystems, we assume that all normal
blocks inside the enabled subsystem and the input signals
of it have the same sample time with the enabling signal.
In the literature, e.g. [16] and [4], the same restriction is
assumed.

For both continuous and discrete cases, we model the wire
connecting the block that outputs the enabling signal and
the enabled subsystem as a shared variable en. When both
the enabling signal and the enabled subsystem are continu-
ous, first of all, for each normal block inside the subsystem,
we add en > 0 as a conjunction with the domains of all its
differential equations, and meanwhile, add an extra differ-
ential equation 〈 ˙out = 0&en ≤ 0〉 (meaning that the output
is not changed when the signal is not enabled) to the block,
thus the new domains for the block will be complete; then
flatten the enabled subsystem, the resulting diagram plus
the outside output block will constitute a new continuous
diagram, which can be translated according to Algorithm 3.

On the other hand, when both the enabling signal and the
enabled subsystem are discrete and have the sample time,
first of all, for each normal block inside the subsystem, we
add the enabling condition en > 0 as a conjunction with
the guards of the computation of the block; then flatten the
enabled subsystem, the resulting diagram plus the outside
output block will constitute a new discrete diagram, which
can be translated according to Algorithm 4.

3.2.7 User Options for Translation

A. Options in Separating the Diagram.

As defined in Sec. 3.2.3, when separating a diagram, we
assume that the control represented by discrete blocks is
centralized, thus we put all connected discrete blocks into
one partition. We loosen the restriction here and allow
users to decide whether the control is centralized or dis-
tributed. When the control represented by two connected
discrete blocks is distributed, then we need to separate the
two blocks and put them to two different partitions. We
say a control option made by user is valid, if and only if
after separating the diagram, the two ends of wires connect-
ing any two distributed discrete blocks must reside in two
different sub-diagrams.

Now we define how to translate two distributed discrete
blocks. For ease of presentation below, according to the



direction of transmitting signals, we call one of them source
block and the other target block. Assume the sample times
of the source and target blocks are p and q respectively.
When p is not equal to q, we need to negotiate about the
values output from source and input to target. Assume the
set of wires between these two blocks is I, and for each wire
i ∈ I, the signal transmitted along it is si. For constructing
the process for the distributed blocks, we first cut all the
wires in I and define a buffer Buf in between,

Buf=̂ ‖i∈I (fun(chini?si, chouti!si, p, q))∗ ,

where chini , chouti are added to represent the input and out-
put channels transmitting signal si from source block and to
the target block respectively, and fun is defined for negoti-
ation. The definition of fun makes sure that for each input
signal, the target block always gets its newest value in the
last nearest period of the source block. To achieve this, we
need to record the occurrence of input and output processes
chini?si, chouti!si in the time interval equal to the least com-
mon multiple of sample times p and q. For example,

fun(chin?s, chout!s, 2, 3) =̂ chin?s; chout!s; chin?s;
chout!s; chin?s

After Buf is defined, we translate the source and target
blocks according to our method presented in Sec.3.1, and
then by putting the resulting processes in parallel compo-
sition with Buf, we reach the process for the distributed
discrete blocks finally.

On the contrary, to be more flexible, for any two blocks
that are not reachable from each other, we provide user an
option to add a wire between them, which will not affect
the semantics but only for translation purpose. With the
addition of the wire, we can partition these two blocks into
one group, and do the translation accordingly.

B. Options in Abstraction.

Details may help us to figure out what actually happens,
however sometimes too much of them may stop us to find
the truth. We provide options for users to abstract away
the details of Simulink blocks when the translation is being
done. Instead of translating directly the actual block, we ask
user to define the semantics of the block manually and use
the semantics for translation. The format of the semantics
must conform to two rules: for a continuous block, a list of
differential equations with domains must be provided; for a
discrete block, the sample time and computation must be
provided.

4. IMPLEMENTATION
We implement the above translation algorithms in a protyp-

ical tool, called S2H, 3 in Java. The tool S2H takes a
Simulink model from MATLAB (in xml format) as input
and generates an annotated HCSP model as output, which
is written in the input syntax of HHL prover. The gen-
erated HCSP model consists of four files for variable defini-
tions, process definitions, assertion definitions, and a goal to
be proved, respectively. Before verifying the model in HHL
prover, we need to refine the definitions of assertions and

3The tool and the proof of the case study in next section
can be found at
https://www.github.com/submission/emsoft2013

goal, to make them more precise to reflect the actual require-
ment we expect to prove. But it should be pointed out that
modification to the files for variable and process definitions
are not allowed. Finally, the refined HCSP model, that is in
the form of HHL specifications, is verified by HHL prover.
The whole verification architecture is shown in Fig. 2.

HHL prover

Simulink models Translator

Annotated
HCSP models

Refined asser-
tions and goal

HHL specifications Verification conditions

Interactive prover Automated prover

Figure 2: Verification Architecture of Simulink
Models

For using the tool S2H, user should install Java Runtime
Environment on the machine first, and then set two environ-
mental variables for the paths of Isabelle and HHL prover
respectively.

5. CASE STUDY
In this section, we illustrate our approach by modelling

and verifying a combined operational scenario of Chinese
Train Control System level 3 (CTCS-3) with respect to its
System Requiement Specification (SRS). The operating be-
havior of CTCS-3 is specified by 14 basic scenarios, all of
which cooperate with each other to constitute normal func-
tionality of train control system. The combined scenario
considered here integrates movement authority, level transi-
tion, and mode transition of CTCS-3.

The movement authority (MA) scenario is the basis to
guarantee trains not to collide with each other. In this
scenario, a train applies for MA from Radio Block Center
(RBC) in CTCS-3 or Train Control Center in the backup
system CTCS-2, and if the application succeeds, the train
gets the permission to move but only within the MA it owns.
An MA is composed of a sequence of segments. For each seg-
ment seg, we use seg.v1 and seg.v2 to represent the speed
limits for which the train must implement emergency brake
and normal brake (thus v1 ≥ v2), seg.e the end point of the
segment, and seg.mode the operating mode of the train in
the segment. Two modes are considered in this case study:
Full Supervision (FS), for which a train knows the complete
information including its MA, line and train data, thus it can
move with normal speed; Calling On (CO), for which a train
cannot confirm cleared routes, thus it must move with lim-
ited speed. Especially, for safety consideration, for a train
under CTCS-3, RBC can only grant it the MAs before a
CO segment, and the train needs to ask the permission of
the driver before moving into the CO segment. Thus, both
the speed limits for CO segments are initialized to be 0 in
CTCS-3.

Given an MA, we define for each segment seg the static



speed profile as the region formed by the two speed limits
of the segment, i.e. v ≤ seg.v1 and v ≤ seg.v2, and the
dynamic speed profile as the one by calculating down to the
higher speed limit of next segment (i.e. next(seg)) taking
into account the train’s maximum deceleration (i.e. b), i.e.
v2 + 2b s ≤ next(seg).v21 + 2b seg.e. It is required that the
train must move within the static and dynamic speed pro-
files.

q q q q
ST x1 x2 x3

MA
FS CO

TCC RBC

CTCS-2 CTCS-3

ppppppppppppppppppp
p p p p p p p p p p p p p p p p p p p
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p p p p p p p p p p p p p p p p p p p

Figure 3: Level and mode transition

The Combined Scenario.
The combined scenario is shown in Fig. 3, which occurs

under the following situation: the train has got enough MA
to complete the combined scenario; there are two adjacent
segments in the MA, divided by location x2, and at x2, the
level transition from CTCS-2 to CTCS-3, and the mode
transition from FS to CO, will occur simultaneously; the
train stops initially at location x1, and has an agreement
from RBC to start level transition at x1 and complete the
level transition at x2.

Under these conditions, the level transition scenario oc-
curs as follows: when the train moves between location x1

and x2, it will be co-supervised by CTCS-2 and CTCS-3 (for
this case we will model the level of the train as 2.5). One
consequence is that the train must conform to the speed
profiles for both control systems. Thus, x2 as the starting
point of the CO segment, both the speed limits for it will
be 0; and then when the train reaches location x2, the level
of the train is set to 3 and the level transition completes.
The mode transition scenario behaves as follows: if the train
moves under level 2, it can update the mode to CO directly
at location x2; otherwise if it moves under level 3, it needs to
ask the permission from the driver to enter the CO segment.
If the driver says true, the speed limits of the CO segment
will be reset to be 40km/h and 45km/h respectively, and
as a consequence, the train updates its mode to be CO and
passes x2 with a positive speed.

5.1 Modeling in Simulink
Fig. 4 shows the top-level view of the Simulink model for

the combined scenario, with the following explanations:

• A set of constants and variables are defined and ini-
tialized. Constants v11 and v12 represent the speed
limits for FS segment, with values 105 and 100, and
x2 and eoa locations for transition and the end of MA,
with values 10 and 20; variables s, v, a, level and mode
represent the trajectory, velocity, acceleration, level,
and mode of the train respectively, and v21 and v22
the speed limits for CO segment. In blocks IC1-IC4,
variables level,mode, v21 and v22 are initialized to 2.5,
0 (for representing FS), 0, 0 respectively.

• The continuous plant is defined by a sub-system in
Simulink, and it models the movement of train using
differential equation 〈ṡ = v, v̇ = a〉, with initial values
0, 0 for s, v respectively. a is initialized to 1 by block
IC5.

• Blocks B0 − B5 act like sensors, and observes the
states of the train periodically (we set the period to
be 0.125s). b0− b5 are logical formulas for monitoring
movement of the train, and are modelled using MAT-
LAB functions. For instances, the train is required
to move forward (with non-negative speed), and move
within the static profile, the dynamic profile of the seg-
ment, and as soon as they are violated, b0, b1, b2 will
be activated respectively; moreover, when the train
completes level and mode transitions, b3, b4 will be ac-
tivated respectively; and when the train gets the per-
mission from the driver to enter CO segment, b5 will
be activated.

• The controller is also defined by a sub-system in Simulink,
and it models the discrete computation that must be
taken to the train whenever b0− b5 become true. For
instances, if the train reaches the speed profile, a needs
to be reset to be negative; when the train performs
mode transition in CTCS-3, if it gets permission from
the driver to enter the CO segment, v21 and v22 will be
reset to 40 and 45 respectively; if the level transition
and mode transition succeed, mode and level will be
reset to 1 (for representing CO) and 3 respectively.

After the related variables for the train are reset by
the controller, they are translated to the train plant as
inputs, and a new period starts.
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Figure 4: The top-level view of Simulink model

In all, the model for the combined scenario contains 16
blocks, and two sub-systems for the train and controller,
which in turn are composed of 26 and 5 blocks respectively.



Results.
After setting the constants and initial values for variables,

we get the simulation result, shown in Fig. 5, which indicates
that the train will stop at location x2. Following this, we
translate the Simulink model for the combined scenario into
HCSP model using tool S2H, which in detail consists of four
files varDef, procDef, assertDef and goal, 488 lines of code
in all We refine the assertions in assertDef and the goal in
goal according to the property to be proved, and then verify
the refined model in HHL prover. The verification is more
general than simulation: the simulation asks for the exact
(initial) values of the constants and variables, e.g. normal
acceleration and brake acceleration; however, during verifi-
cation, we abstract the values away by the method intro-
duced in Sec. 3.2.7, i.e. from 1 and −0.1 to intervals [−1, 1]
and [−1, 0) respectively.

Using HHL prover, we finally prove the following goal as
a lemma:

lemma goal : "{True,True} P {plant_s_1 <=(Real 10),

True; (l = Real 0) | (high (plant_s_1 <=(Real 10)))

,True}"

where the postcondition together with the history formula
indicate that the train never moves across location x2, i.e.
10 here.

2 65431 870
0

10

8

6

4

2

plant_s_1

t

Figure 5: The result of simulation

6. CONCLUSION AND FUTURE WORK
This paper presents an automatic translation from Simulink

models to HCSP processes. The resulting HCSP processes
can not only provide a formal semantics for Simulink models,
but also they can be verified by an HHL prover we have im-
plemented in proof assistant Isabelle/HOL. We demonstrate
our approach by considering a case study on a combined sce-
nario of Chinese Train Control System at Level 3. Both the
simulation result in Simulink and the verification result in
HHL prover indicate a design error in CTCS-3.

For future work, we will investigate the use of HCSP to
formalize Simulink/Stateflow models with flexible control
flow diagrams; and on the other hand, to apply our approach
to more practical hybrid systems, especially the other sce-
narios of CTCS-3 and their combinations, for safety analysis
and verification.
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