
Understanding Performance Concerns in the API
Documentation of Data Science Libraries

Yida Tao
College of Computer Science and

Software Engineering
Shenzhen University, China

yidatao@szu.edu.cn

Jiefang Jiang
College of Computer Science and

Software Engineering
Shenzhen University, China

jiangjiefang2018@email.szu.edu.cn

Yepang Liu
Department of Computer Science and

Engineering
Southern University of Science and

Technology, China
liuyp1@sustech.edu.cn

Zhiwu Xu
College of Computer Science and

Software Engineering
Shenzhen University, China

xuzhiwu@szu.edu.cn

Shengchao Qin∗
School of Computing and Digital

Technologies
Teesside University, UK

s.qin@tees.ac.uk

ABSTRACT
The development of e�cient data science applications is often im-
peded by unbearably long execution time and rapid RAM exhaus-
tion. Since API documentation is the primary information source
for troubleshooting, we investigate how performance concerns are
documented in popular data science libraries. Our quantitative re-
sults reveal the prevalence of data science APIs that are documented
in performance-related context and the infrequent maintenance
activities on such documentation. Our qualitative analyses further
reveal that crowd documentation like Stack Over�ow and GitHub
are highly complementary to o�cial documentation in terms of the
API coverage, the knowledge distribution, as well as the speci�c
information conveyed through performance-related content. Data
science practitioners could bene�t from our �ndings by learning
a more targeted search strategy for resolving performance issues.
Researchers can be more assured of the advantages of integrating
both the o�cial and the crowd documentation to achieve a holistic
view on the performance concerns in data science development.

KEYWORDS
API documentation, performance, data science, empirical study

ACM Reference Format:
Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin. 2020. Un-
derstanding Performance Concerns in the API Documentation of Data Sci-
ence Libraries. In 35th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’20), September 21–25, 2020, Virtual Event, Australia.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3324884.3416543

∗Shengchao Qin is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416543

1 INTRODUCTION
Data science is an emerging �eld that combines mathematics, sta-
tistics, machine learning, and domain knowledge to derive insights
from data [18]. As the volume and complexity of data grow rapidly,
the painfully slow execution time and quickly exhausted RAM are
becoming the major bottlenecks for developing e�cient data sci-
ence applications [30]. Since external data science libraries such
as Pandas, NumPy, and TensorFlow are often used in these applica-
tions, their good performance is also vital for improving application
e�ciency and developer productivity.

Nevertheless, we observe persistent and active discussions on the
performance problems of data science libraries. Take the Pandas li-
brary for example. As of April 2020, there are 853 questions on Stack
Over�ow that are tagged with both pandas and performance, and
together these questions have over one million views. Furthermore,
the answer acceptance rate for these questions is 58%, with an aver-
age of 41 days between the creation of questions and the proposal
of accepted answers. On the GitHub repository of Pandas, 1,113
issues labeled with performance have been reported. While 83% of
these issues are closed, the average resolution time is up to 134 days.
These observations imply that data science developers may su�er
from recurring interruptions caused by intractable performance
problems. Existing work has also revealed performance issues in
other data science libraries that cause runtime ine�ciency [31, 42].

When data science developers are troubleshooting performance
problems, documentation will likely be their �rst resort. For this
reason, understanding how performance-related concerns are doc-
umented in data science libraries is crucial for steering e�ective
performance optimizations. While previous studies have explored
the quality [36], accessibility [23], and knowledge types [27] of
API documentation, none of them targets on data science libraries
and few focus on the performance aspects. To bridge this gap, we
conduct an empirical study on popular data science libraries to
understand the documentation practice on performance concerns,
which denote descriptions and discussions related to runtime speed
and memory consumption. In addition to the o�cial API docu-
mentation maintained by library developers, we also consider two
types of “crowd” documentation, Stack Over�ow (SO for short) and

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin

.py .md .rst .ipynb

API Docstring
+

User Guide

Stack Overflow
+

GitHub

① Performance Concerns Extraction & API Linking

Performance concerns in
official documentation

Performance concerns in
crowd documentation

② Knowledge Classification Ś Evolution AnalysisŚ Consistency Analysis

Evolution patterns of
performance-related
documentation

Knowledge types of
performance-related
documentation

Consistency between
official and crowd
documentation

Figure 1: Overview of our methodology.

GitHub, which are well-recognized resources for troubleshooting
development problems [12, 14, 43]. The research questions we aim
to address include:

• RQ1: How common are data science APIs documented in
performance-related context?Howdoes performance-related
documentation evolve over time?

• RQ2:What types of knowledge are provided by performance-
related documentation?

• RQ3:What are the di�erences between the o�cial and crowd
documentation in terms of performance-related content?

Our subjects include six widely used libraries from the Python
data science ecosystem (Table 1). We leveraged program analysis,
natural language processing routines, and traceability heuristics
to automatically extract performance-related sentences from doc-
umentation and establish links between the sentences and corre-
spondingAPIs.We analyzed the extracted data to study the statistics
of APIs that are documented in performance-related context. We
also qualitatively analyzed the extracted performance concerns to
understand their knowledge types, evolution reasons, and content
consistency. Our major �ndings include:

• From 8.7% to 30.5% APIs of the target libraries have been
documented in performance-related context, indicating the
prevalence of performance concerns for data science libraries.

• Performance concerns in crowd documentation covers a dif-
ferent set of subject APIs compared to o�cial documentation;
only < 5% APIs have been mentioned in both data sources.

• O�cial documentation frequently provides the function knowl-
edge (e.g., the runtime e�ciency of a certain functionality),
while crowd documentation focuses more on practices and
alternatives types of knowledge. SO rarely provides explana-
tory knowledge types such as purpose & rationale.

• The vast majority (86.3%) of performance concerns from the
crowd documentation provide new information that is not
present in the o�cial documentation; only a very few (2.7%)
are inconsistent with the o�cial documentation.

• Performance concerns in the o�cial documentation are typ-
ically added long after the introduction of corresponding
APIs, with an average of 0.48 follow-up updates that consist
mostly of trivial semantic changes.

Table 1: Dataset statistics.

Library Version # APIs # SO # GitHub
threads issues

NumPy 1.16.4 813 64,518 14,794
Pandas 0.24.2 1,828 118,636 29,387
SciPy 1.2.1 2,008 14,583 10,844
Scikit-learn 0.21.2 1,622 16,181 15,464
TensorFlow 1.13 3,635 46,142 33,738
Gensim 3.7.3 1,016 1,512 2,663

In general, we empirically analyzed how performance concerns
on data science APIs are documented in terms of their occurrences,
knowledge distributions, information consistencies, and evolution
patterns. Our results further reveal how o�cial documentation
and crowd documentation complement each other in providing a
holistic view of data science performance issues. We hope that our
work, by providing a better understanding of the documentation
practice on performance concerns, will bene�t both data science
practitioners and researchers in their battles against performance
bottlenecks. Our data are released for public usage [41].

2 METHODOLOGY
In this section, we present our methodology in detail. The overall
work�ow is shown in Figure 1.

2.1 Data Collection
2.1.1 Target Libraries. As shown in Table 1, we focus on six widely-
used libraries, all of which are core packages in the Python ecosys-
tem for data science. These libraries solve di�erent classes of prob-
lems and together support various important tasks in data science.
In particular, NumPy and Pandas provide functionalities to work
with arrays and tabular data [3, 4]; SciPy and Scikit-learn pro-
vide common numerical routines for statistics and machine learn-
ing [8, 9]; TensorFlow is a general-purpose deep learning frame-
work [19] while Gensim is primarily used for natural language
processing tasks [1].

2.1.2 O�icial Documentation. O�cial API documentation is typi-
cally authored and maintained by library developers. We consider
two types of o�cial documentation: the API docstrings and the o�-
cial user guide. A Python docstring is a string literal, surrounded by
triple double quotes, that appears as the �rst statement of an API
de�nition. Developers often use docstrings to explain the general
purpose of an API and how it should be used. Users can invoke
Python’s built-in help() function to check the docstring of a given
API [6]. To collect the docstring data, we perform a depth-�rst tra-
versal on the abstract syntax tree built from the root module of each
target library to extract all the public APIs (i.e., classes, functions
and attributes), as shown in Table 1. We then leverage Python’s
introspection capability [7] to obtain the �le path, line range, and
textual content of the docstrings for each API.

While docstrings provide succinct API-level descriptions, the
o�cial user guide provides a more high-level overview of a library.
Users may �nd various types of information in a user guide, such as
the basic concepts and algorithms used in the library, the tutorials

Understanding Performance Concerns in the API Documentation of Data Science Libraries ASE ’20, September 21–25, 2020, Virtual Event, Australia

and caveats on API usages, the guidance for extending the library,
and so on. Compared to API docstrings, a user guide is more �exi-
ble in terms of the content, syntax, and structures. To collect the
user guide data, we traverse the source directories of each library
recursively to search for �les with the format of reStructuredText
(.rst), Markdown (.md) and Jupyter notebook (.ipynb). The for-
mer two �le formats correspond to light-weight markup languages
widely used for technical documentation, while Jupyter Notebook
is an interactive computing interface often used for developing,
debugging, and demonstrating data science applications [5].

2.1.3 Crowd Documentation. As online Q&A forums and social
coding sites are reshaping the knowledge sharing in developer com-
munities, research has proposed that sites like Stack Over�ow and
GitHub can be leveraged as essential complements to o�cial API
documentation [32, 39, 43, 44]. For this reason, crowd documenta-
tion is also considered as an important data source in our study.
We used the o�cial Stack Exchange REST API [11] and GitHub
REST API [2] to crawl SO threads and GitHub issues of our target
libraries. Note that an SO thread includes a question post and all
of its answer posts and comments, while a GitHub issue includes
an issue description and follow-up comments. Table 1 shows the
details of our dataset.

2.2 Extraction of Performance Concerns and
API Linking

Given the collected documentation, we identify performance con-
cerns at the sentence level by �rst applying spaCy [10] for sentence
segmentation. We then formulate a list of performance-related
keywords based on literature [37] and common knowledge. The
keywords include fast, slow, expensive, cheap, performance, speedup,
computation, accelerate, intensive, scalable, e�cient and their in-
�ections (e.g., e�ciency, e�ciently).1 Sentences containing these
keywords are extracted as candidates that possibly discuss perfor-
mance concerns.

Next, we identify the subject APIs that are being discussed in
each candidate sentence, a problem often referred to asAPI traceabil-
ity [16]. In this work, we used the declaration-based, hyperlink-based,
and mention-based heuristics proposed in [23] to establish links be-
tween natural-language sentences and APIs. First, sentences from
an API’s docstring are directly linked to this particular API (i.e.,
declaration-based). Second, sentences from the o�cial user guide
and crowd documentation are linked to an API if they contain hy-
perlinks to that API’s reference page (i.e., hyperlink-based). Third,
we leverage regular expressions and the html tag <code> to extract
explicit code mentions from candidate sentences in the o�cial user
guide and crowd documentation (i.e., mention-based). Note that a
code mention may contain expressions or statements. To further
identify the exact API(s) referred to in a code mention, we traverse
its abstract syntax tree to search for Call and Attribute nodes. We
then resolve each of these nodes to its fully quali�ed API names by
matching it against APIs of the subject library, which is determined
by SO tags and the identi�er of the receiver object. For example, for
a code mention [row[’a’] for _,row in df.iterrows()], we
�rst extract iterrows as a function call. Since the code mention

1In�ection denotes di�erent forms (e.g., noun, adjective, adverb) of a word.

is from an SO thread tagged with pandas and the identi�er df is a
common abbreviation for pandas.DataFrame, we �nally link it to
the pandas.DataFrame.iterrows API. Sentences that cannot be
linked or resolved to any of our target APIs are removed.

Note that sentences containing both the performance-related
keywords and proper API links may not always address perfor-
mance concerns. For example, “the choice of ddof is unlikely to a�ect
model performance” from the sklearn.preprocessing.scale

docstring discusses the performance of machine learning models
(e.g., accuracy) rather than runtime performance and memory con-
sumption. The sentence “convolve in1 and in2 using the Fast Fourier
Transform method” from scipy.signal.fftconvolve is also not
related to performance although it includes the keyword “fast”.
To eliminate such false positives, we manually validated whether
the automatically extracted candidates truly address API perfor-
mance concerns (see Section 3.2 for details of the manual validation).
Only true positive sentences were considered as valid performance-
related documentation and used in subsequent analyses.

2.3 Knowledge Classi�cation
After identifying performance-related documentation, we �rst ana-
lyzed the di�erent types of knowledge provided by such documen-
tation. To this end, we referred to the work of Maalej and Robillard,
which proposed a taxonomy of 12 knowledge types derived from
the API documentation of Java SDK 6 and .NET 4.0 [27]. While this
taxonomy has been developed to be meaningful and reliable, it is
unclear whether it can be directly applied to our task. A major con-
cern is that the taxonomy was originally proposed to characterize
general API documentation, whereas our goal is to characterize
documentation speci�c to performance concerns.

To address this issue, we applied the inductive codingmethod [13]
to better adapt the taxonomy to our performance-speci�c data. Ini-
tially, the �rst author used the original taxonomy to classify 100
randomly selected performance-related sentences. As part of this
process, the �rst author removed existing knowledge types that
are no longer applicable and added new knowledge types emerged
from our data. The second author then repeated this process us-
ing the adjusted taxonomy. The third author helped reconcile the
disagreement once the �rst two authors had di�erent opinions of
the taxonomy. This process continued until the new taxonomy was
�xed.

Table 2 shows the details of our new taxonomy, which includes
11 knowledge types. Among which, six are directly reused from [27]
and �ve are newly emerged from our data. In particular, we iso-
lated the “Performance Attributes” knowledge type from the orig-
inal “Quality Attributes and Internal Aspects” knowledge type.
We merged “Internal Aspects” with the original “Control-Flow”
and “Structure” types to form the new “Implementation or Inter-
nal Aspects” knowledge type. We introduced the “Usage Practice”
knowledge type, which combines the original “Patterns” and “Code
Examples” types since both describe how APIs should be used in
practice. We also added the “Alternatives” knowledge type that is
observed exclusively from our performance-speci�c data. Accord-
ingly, each performance-related sentence was labeled with one or
more knowledge types from this taxonomy.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin

Table 2: Taxonomy of knowledge types in performance-related documentation.

Knowledge Type Description Example
Performance
Attributes

Describes the performance of an API, or the per-
formance implications of di�erent arguments or
dataset.

Setting to False will improve the performance of this
method. (pandas.DataFrame.set_index)

Functionality &
Behavior*

Describes what the API does (or does not do) in
terms of functionality or features.

The Series.align method is the fastest way to simulta-
neously align two objects. (pandas.Series.align)

Implementation or
Internal Aspects

Explains an API’s internal implementation that is
only indirectly related to its observable behavior.

. . . internally this version uses a much faster implemen-
tation that never constructs the indices and uses simple
slicing. (numpy.fill_diagonal)

Purpose & Ratio-
nale*

Explains the purpose of providing an element or
the rationale of a certain design decision.

The vectorize function is provided primarily for conve-
nience, not for performance. (numpy.vectorize)

Alternatives Describes a more/less e�cient alternative of an
API, or compares the performance between alter-
native APIs.

Mini-batch sparse PCA MiniBatchSparsePCA is a vari-
ant of SparsePCA that is faster but less accurate
(sklearn.decomposition.MiniBatchSparsePCA)

Usage Practice Describes common usage scenarios for an API.
Describes good, recommended or bad API usage
practices.

To construct a matrix e�ciently, make sure
the items are pre-sorted by index, per row.
(scipy.sparse.lil_matrix)

Concepts* Explains the meaning of terms used to name or
describe an API element, or describes design or
domain concepts used or implemented by the API.

The main theoretical result behind the e�ciency of ran-
dom projection is the Johnson-Lindenstrauss lemma.
(sklearn.random_projection)

Directives* Speci�es what users are allowed / not allowed
to do with the API element. Directives are clear
contracts.

We do require that your array be convertible to a
NumPy array, even if this is relatively expensive.
(pandas.api.extensions.ExtensionArray)

Environment* Describes aspects related to the environment in
which the API is used.

These modes will have di�erent performance pro�les
on di�erent hardware and for di�erent applications.
(tensorflow.keras.layers.LSTMCell)

References* Includes any pointer to external documents, ei-
ther in the form of hyperlinks, tagged “see also”
reference, or mentions of other documents.

See the “enhancing performance” documentation for
more details. (pandas.eval)

Miscellaneous Includes other information such as TODOs and
changes.

(TODO) Replacing or improving the perfor-
mance of this would greatly speed things up.
(gensim.models.ldaseqmodel.sslm.update_obs)

*Knowledge types proposed in [27].

2.4 Consistency Analysis
In addition to knowledge types, we also aim to understand the
di�erences between o�cial and crowd documentation in terms of
the speci�c performance-related information they provide. To this
end, we �rst matched API links to associate performance-related
sentences from the crowd documentation with those from the of-
�cial documentation that discuss the same subject APIs. Next, by
comparing with the performance concerns in the corresponding
o�cial documentation, we manually classi�ed each performance-
related sentence from the crowd documentation as 1) consistent, if it
provides the same or consistent information as the o�cial documen-
tation; 2) inconsistent, if it provides inconsistent or contradictory
information as the o�cial documentation; or 3) not o�cially doc-
umented, if the information it provides is not found in the o�cial
documentation.

It is worth noting that we originally planned to apply text simi-
larity techniques to automate the abovementioned classi�cations.
However, our preliminary experiment revealed that text similarity
algorithms performed poorly on distinguishing information con-
sistency, especially when the target sentences are already highly

similar in terms of their subjects (i.e., they all discuss performance
concerns on the same APIs). For example, two sentences with high
similarity scores might convey completely contradictory ideas (e.g.,
“This API is very fast” and “This API is very slow”). Hence, we re-
sorted to manual inspection for a more accurate analysis. Similar
to that described in Section 2.3, the classi�cation was conducted
independently by the �rst two authors and discussed with the third
author in case of discrepancies.

2.5 Evolution Analysis
Apart from the knowledge types and information consistency, char-
acterizing how library developers evolve performance concerns is
also important for understanding their documentation practice. In
this study, we are interested in knowing when performance con-
cerns are added to the documentation and how they are changed
over time. For this purpose, we analyzed the commit history of
performance-related sentences from the o�cial documentation.
Speci�cally, we characterized these commits in terms of 1) whether
a performance concern is added to the documentation at the same
time its subject API is introduced to the source code; 2) how often

Understanding Performance Concerns in the API Documentation of Data Science Libraries ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 3: The number of performance-related sentences and corresponding APIs discovered from each data source.

Library
Docstring User Guide Stack Over�ow GitHub

perf. # APIs # perf. # APIs # perf. # APIs # perf. # APIs
sent. sent. sent. sent.

NumPy 84 54 35 21 147 113 118 135
Pandas 65 53 115 79 164 96 150 121
SciPy 247 144 43 43 150 99 94 88
Scikit-learn 232 134 134 97 75 61 96 72
TensorFlow 161 120 67 50 122 102 97 93
Gensim 75 53 72 41 41 24 39 34
Total 864 558 466 331 699 495 594 543

performance-related concerns in the o�cial documentation are
modi�ed; and 3) why a performance concern is modi�ed.

We developed an algorithm that leverages the git log command,
using the �le path and line range as parameters, to extract all past
commits of a given performance-related sentence. The algorithm
uses similarity-based heuristics to automatically distinguish be-
tween the commit that adds the target sentence and the commit
that modi�es it. For a commit that adds a performance-related sen-
tence, the algorithm checks whether it also contains the source
�le of the subject API and whether the API’s de�nition is added to
this �le in this commit. If so, the commit is classi�ed as added to-
gether with APIs, meaning that the API and its performance-related
documentation are added and committed together; otherwise, the
commit is classi�ed as added later, meaning that the performance
concern is added later after the API it refers to has been introduced
in previous commits. In this case, we also analyzed the duration
between the addition of the API and the addition of its performance
concern. Note that the timestamp of an API/documentation addition
was also extracted from the output of git log.

For a commit that modi�es a performance-related sentence, we
manually characterized the rationale of the change. We referred to a
previous work that studied API documentation evolution [38] to ini-
tiate the taxonomy of evolution reasons. However, as this previous
work focused on the general documentation of Java programs [38],
its taxonomy could not be directly applied to our dataset. Therefore,
we adjusted this taxonomy through an inductive coding process
similar to that described in Section 2.3. As shown in Table 7, the
adjusted taxonomy includes 11 reasons for updating performance
concerns, six were rephrased from the �ndings of [38] and �ve
were newly emerged from our data.

3 EVALUATION
In this section, we report the evaluation results on each step of our
methodology.

3.1 Extracted Performance Concerns
Using the approach described in Section 2.2, we extracted 2,017 sen-
tences that contain performance-related keywords from the o�cial
documentation. Among which, 1,330 were marked as true positives
for truly addressing API performance concerns. As for the crowd
documentation, we initially extracted 18,307 candidate sentences.
To make the manual analysis feasible while statistically meaning-
ful, we randomly selected 1000 sentences from SO and 1000 from

GitHub for further processing. It is worth noting that the num-
ber of extracted candidate sentences for each library is di�erent,
with that of Gensim being the lowest. To balance the number of
selected sentences across libraries, we set the probability of being
randomly selected to be 0.2 for Gensim and 0.16 for the remaining
�ve libraries. Among the 2000 candidate sentences from the crowd
documentation, we identi�ed 1,293 true positive sentences that
indeed discuss performance concerns of our target APIs. Table 3
shows the number of performance-related sentences identi�ed from
each data source.

3.2 Manual Classi�cations
Our methodology requires manual e�orts in four tasks, which in-
clude classifying the validity, the knowledge type, the information
consistency and the evolution reasons of performance-related doc-
umentation. Manual work is crucial for identifying the complex
nuances of natural language that often cannot be distinguished au-
tomatically. For example, sentences containing performance-related
keywords may not really address performance concerns, and sen-
tences with high similarity scores may not convey similar ideas
(see examples from Section 2.3 and 2.4). Also, for text classi�cation
tasks, especially those newly-proposed and domain-speci�c ones
(e.g., classifying the knowledge type of performance concerns, as
proposed in this paper), manual labeling is often necessary before
any automated method is attempted [20, 27].

Admittedly, manual classi�cation is inherently subjective. To
address this problem, each sentence was independently evaluated
by the �rst and the second author as described in Section 2. Here
we report the Cohen’s kappa coe�cient, which measures the agree-
ment between two raters on a scale of 0–1 [28]. The kappa value
for each of the four tasks is 0.89, 0.61, 0.71 and 0.63, respectively,
meaning that the two raters had almost perfect agreement (kappa 2
[0.81,1]) for labeling the validity of performance-related sentences
and substantial agreement (kappa 2 [0.61–0.8]) for labeling the
knowledge type, information consistency and evolution reasons.
Disagreements were reconciled with the third author joining the
discussion.

3.3 API Linking and Commit Categorization
When we inspected each sentence to label its validity and knowl-
edge types, we also checked the correctness and completeness of
its API linking, which was automatically determined as described
in Section 2.2. The precision and recall of our API linking approach

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin

Figure 2: Percentage of APIs with performance concerns
that are discovered from the o�cial documentation, the
crowd documentation, and from both data sources.

is 81.2% and 93.5%, respectively. False positives were mostly due
to name ambiguity, when a name was incorrectly resolved to an
API with di�erent fully quali�ed name but having the same simple
name. False negatives were mainly due to the absence of code-
like characteristics. For example, our approach cannot extract the
sum API when it appears as a common english word in a sentence
without the <code> tag or API-indicating symbols like () in its
surroundings. Since reliable API linkings are essential for studying
API statistics (Section 4.1) and associating performance concerns re-
lated to the same APIs (Section 2.4), we manually �xed the incorrect
and incomplete instances during this process.

We also evaluate our algorithm that automatically categorizes
commit types in the evolution analysis (Section 2.5). We randomly
selected 300 sentences and manually reviewed the results. Our
algorithm achieves 96.3% accuracy in distinguishing commits of
the added together with APIs, added later, and modi�ed categories.

4 RESULTS
In this section, we report our study results with respect to each
research question.

4.1 API Coverage
Table 3 shows the number of APIs discussed in the performance-
related documentation of each library. Considering the total number
of APIs shown in Table 1, all of the target libraries have nontriv-
ial proportions of APIs being documented in performance-related
context. Speci�cally, TensorFlow has 8.7% of its APIs being the
subject of performance-related documentation while NumPy has
up to 30.5% of such APIs. The other libraries have approximately
15% of their APIs being documented for performance-related rea-
sons (Figure 2). This result manifests the prevalence of performance
concerns for data science libraries.

By comparing the API names, we further analyzed the type
of data source where each API is being discussed. As shown in
Figure 2, each data source has its own merits. For NumPy and Pan-
das, the crowd documentation has performance-related discussions
on more APIs compared to the o�cial documentation. For the re-
maining libraries, however, performance concerns from the o�cial

documentation cover more APIs. Interestingly, only a few APIs are
mentioned in both the o�cial and the crowd documentation (<
5% as shown in Figure 2). These observations imply that SO and
GitHub tend to complement o�cial documentation by covering
an additional set of APIs with performance concerns. We further
expand on this issue in Section 4.3.

Finding 1: Performance concerns in crowd documentation cover
a di�erent set of APIs compared to o�cial documentation. To-
gether these two data sources have documented performance
concerns for a nontrivial proportion of data science APIs.

4.2 Knowledge Types of Performance-related
Documentation

To better understand performance-related documentation, we ana-
lyzed the knowledge types of the extracted performance-related sen-
tences using the taxonomy in Table 2. Figure 3 shows the knowledge-
type distribution strati�ed by libraries and data sources. Below we
highlight a few interesting observations.

Functionality is themost common knowledge type in API
docstrings, yet it is not discussed often in crowd documenta-
tion. In particular, 33.4% of the performace-related sentences in API
docstrings provide the Function knowledge, while the percentage of
this knowledge type is 12.4% for SO and only 1.9% for GitHub. Since
o�cial documentation is inherently dedicated to describe function-
alities and behaviors of APIs, library users, especially GitHub users
who are often library developers themselves, may not �nd it nec-
essary to include such duplicate knowledge again in their online
discussions.

Usage practice is the topknowledge type discussed on Stack
Over�ow and o�cial user guide. Speci�cally, the Practice knowl-
edge type has a frequency of 36.6% on SO, 31.3% on o�cial user
guide, 21.7% on API docstrings, and only 9% on GitHub. These re-
sults suggest that for data science practitioners facing performance
issues, SO and o�cial user guide could be preferable to docstrings
and GitHub for troubleshooting.

Crowd documentation providesmoreAlternatives type of
knowledge compared to o�cial documentation. In particular,
around one fourth of the performance-related sentences from SO
and GitHub have provided the Alternatives knowledge. A possible
explanation is that unlike o�cial documentation, which is inher-
ently descriptive, crowd documentation is mostly in the form of
information sharing and discussion. Therefore, users on the crowd
platforms are more likely to discuss and compare the performance
of alternatives in their problem-solving and bug-�xing activities.

Stack Over�ow rarely provides explanatory knowledge
types such as Implementation and Purpose. Compared to of-
�cial documentation and GitHub, which all have a certain degree of
discussion on Implementation and Purpose, SO shows a surprisingly
low frequency of these two explanatory knowledge types (5.4% and
1.1%, respectively). It is thus interesting to knowwhether SO focuses
more on the “how” rather than the “why” in performance-related
discussions, and if so, how such a tendency a�ects developers’ learn-
ing and problem-solving skills. We consider this as a meaningful
future research direction.

Understanding Performance Concerns in the API Documentation of Data Science Libraries ASE ’20, September 21–25, 2020, Virtual Event, Australia

(a) API docstring (b) User guide

(c) Stack Over�ow (d) GitHub

Figure 3: Knowledge types of performance-related sentences.

{Function, A�ributes}, {Practice, Alternatives} and {Impl,
Purpose} are knowledge types that often co-occur. By analyz-
ing the co-occurrence of knowledge types in performance-related
sentences, we observed that developers tend to introduce API
functionalities and performance attributes together, especially in
the docstrings (e.g., “Raising this value decreases the number of
seeds found, which makes mean_shift computationally cheaper” from
Scikit-learn). Developers also tend to suggest preferable usage prac-
tice by comparing the e�ciency of alternatives (e.g., “You can either
use �llna (fast) or you can use apply (slow but �exible)” from SO
post 42213549). Finally, implementation knowledge is often doc-
umented with explanations on the design purpose and rationale
(e.g., “This op expects unscaled logits, since it performs a softmax on
logits internally for e�ciency” from TensorFlow). The con�dence
values for {Function}){Attributes}, {Practice}){Alternatives} and
{Impl}){Purpose} are 0.59, 0.35, and 0.27, respectively.

Finding 2: The function knowledge type is often observed in
o�cial documentation, while the practice and alternatives types
of knowledge are more prevalent in crowd documentation. Ex-
planatory knowledge types such as purpose and implementation
are rarely observed on SO.

4.3 Information Consistency
In addition to API coverage and knowledge types, we also analyzed
whether the speci�c information provided by crowd documentation

Table 4: Consistency of performance-related information
from crowd documentation w.r.t. o�cial documentation.

Consistent Inconsistent Not o�cially
documented

SO 15.3% 3.4% 81.3%
GitHub 5.9% 1.8% 92.3%
All 11% 2.7% 86.3%

is consistent with that in the o�cial documentation (Section 2.4).
Results are presented in Table 4 and detailed as follows.

First, about 11% of the performance concerns in crowd docu-
mentation provide information that is consistent with the o�cial
documentation. In particular, SO has a larger percent of consistent
information (15.3%) compared to GitHub (5.9%). Interestingly, these
performance concerns, although being consistent, often have quite
di�erent narratives compared to the corresponding o�cial docu-
mentation. Table 5 shows examples of such cases. Nonetheless, only
⇠5% of these consistent concerns have explicit references to the of-
�cial documentation. It is thus interesting to know whether adding
references to the o�cial documentation could potentially shorten
the resolution time of performance issues on crowd platforms.

Second, very few performance-related information from crowd
documentation (2.7%) is inconsistent with the o�cial documen-
tation. Although this result seems promising, we observed that
inconsistent instances typically convey contradictory information

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin

Table 5: Examples of performance concerns from crowd documentation that are (in)consistentwith the o�cial documentation.

O�cial Documentation Crowd Documentation

Co
ns
is
te
nt In fact, pandas.eval is many orders of magnitude slower for

smaller expressions/objects than plain ol’ Python. (pandas.eval)
pd.eval(’x // y’, engine=’python’) is 1000 times slower
than the same operation in actual Python. (GitHub issue 4037)

Please use tf.keras.layers.CuDNNLSTM for better performance
on GPU. (tf.keras.layers.LSTM)

The CuDNNLSTM layer does the same as the LSTM layer in Keras,
but it runs much faster on Nvidia GPUs (SO post 52340372)

After the one-time initialization, a Phraser will be much
smaller and somewhat faster than using the full Phrases model.
(gensim.models.phrases.Phraser)

Phraser takes a bunch of extra time to create, but then is slightly
faster but much more compact. (GitHub issue 837)

In
co
ns
is
te
nt numpy.genfromtxt is able to take missing data into account,

when other faster and simpler functions like numpy.loadtxt can-
not. (numpy user guide)

genfromtxt is a bit faster than loadtxt (SO post 52238949)

Have a look at the Hashing Vectorizer as a memory e�cient
alternative to CountVectorizer. (sklearn user guide)

The great thing about CountVectorizer is that . . . , which makes
it very memory e�cient, and should be able to solve any memory
problems you’re having. (SO post 27339041)

This implementation is by default not memory e�cient because
it constructs a full pairwise similarity matrix in the case where
kd-trees or ball-trees cannot be used. (sklearn.cluster.DBSCAN)

I suggest you to try sklearn.cluster.DBSCAN - it has similar
behaviour for some data (sklearn examples), also, it runs a way
faster and consumes much less memory. (SO post 54533606)

with respect to time and memory consumption (see examples from
Table 5). If we assume that o�cial documentation is the ground
truth, adopting inconsistent information from the crowd platforms
could instead trigger unexpected performance degradation in data
science applications.

Finally, the vast majority of performance concerns from the
crowd documentation (86.3%) have not been found in the o�cial
documentation (Table 4). This indicates the potential value of crowd
documentation for o�ering a large volume of new information
on the performance of data science libraries. However, whether
such uno�cial information could really be leveraged as a reliable
complement to o�cial documentation depends on its quality (e.g.,
correctness and clarity). Therefore, classifying or characterizing the
quality of uno�cial performance information on crowd platforms
could be a promising future research direction.

Finding 3: The vast majority of performance concerns from the
crowd documentation are not present in the o�cial documen-
tation. Inconsistent performance-related information is rarely
observed, while consistent information is often discussed on
crowd platforms without referring to the corresponding o�cial
documentation.

4.4 Evolution of Performance-related
Documentation

We now report the evolution patterns of performance concerns
in the o�cial documentation. First, for API docstrings, only 39.9%
performance-related concerns are added to the documentation to-
gether with the corresponding API de�nitions. The majority of
performance concerns (60.1%), however, are later added to the cor-
respondingAPIs’ docstrings. Figure 4 shows that this trend is similar
for all the target libraries except for TensorFlow. User guide data
reveals a consistent yet more signi�cant overall pattern: 92.1% of
the performance concerns are added to the user guide after their

Figure 4: Percentage of performance concerns in the API
docstrings that are added together with API de�nitions and
added later.

corresponding APIs had been introduced to the source code. Con-
sidering all added later commits, we found that the average duration
between the addition of an API and the addition of its performance
concerns is 596 days. These results indicate that developers tend
to document performance concerns long after the addition
of the subject APIs.

Next, we study the update frequency of performance-related
documentation. Table 6 shows the respective statistics for API
docstrings and user guide. In general, the majority (73.1%) of per-
formance concerns have stayed the same since they were added
(i.e., zero updated times). Nearly one-�fth of the performance con-
cerns (19.6%) have been updated just once. Only a few concerns
(7.3%) have been updated multiple times (i.e., �2 updated times).
On average, performance-related sentences have only 0.48 updates
during library evolution. On the other hand, the subject APIs of
these performance concerns have an average of 13.5 updates. These
results indicate that performance concerns are not updated of-
ten, whereas their subject APIs have been updated 28 times
more frequently.

Understanding Performance Concerns in the API Documentation of Data Science Libraries ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 6: The number of times a performance concern in the
o�cial documentation is updated.

Updated times # of performance sentences
API docstring User guide

0 676 296
1 142 119
2 27 32
3 15 11
>3 4 8

Finally, we report the evolution reasons of performance con-
cerns, which were observed from the 513 modi�ed commits using
the taxonomy in Table 7. As shown in Figure 5, most updates on
performance concerns are formatting changes. Other common up-
dating reasons include clari�cation, improving �uency, and �xing
spelling. These results show that developers typically apply triv-
ial updates on performance-related documentation,without
major changes to their semantics.

In general, the evolution of performance-related documentation
seems to lag behind the evolution of their subject APIs, in terms
of both the creation time and maintenance activities. A natural
question that arises here is whether performance-related documen-
tation tends to be out-of-sync and potentially misleading for users
to make performance-related judgement (see the example of wrong
documentation in the “Fix wrong info” row of Table 7). We consider
this as another research question that is worth further exploration.

Finding 4: Performance concerns are typically documented long
after the addition of the corresponding APIs. Most of them have
been stayed the same during library evolution or updated only
once with mostly trivial semantic changes.

4.5 Implications
We now highlight a few important implications of our �ndings. For
data science library users, our results suggest a more targeted strat-
egy for searching performance-related information based on knowl-
edge types (Finding 2). For library developers, keeping abreast of
performance-related discussions on crowdsourced platforms might
help them identify omissions in the o�cial documentation (Find-
ings 1–3). Also, more attention should be drawn on the consistency
of performance-related documentation during the evolution of cor-
responding APIs (Finding 4). For researchers, investigating uno�-
cial performance-related information on crowdsourced platforms
(Finding 3) and rarely-updated performance concerns in o�cial
documentation (Finding 4) are both promising avenues for improv-
ing documentation quality. Research e�orts could also be made on
developing automatic techniques that merge performance concerns
from o�cial and crowd documentation while preserving the best
of both worlds (Findings 1–3).

5 THREATS TO VALIDITY
Our study focuses on six Python libraries and two types of crowd
documentation. The results may not generalize to other data science
libraries, other programming languages, or other online forums and

Figure 5: Reasons for updating performance concerns in the
o�cial documentation.

websites. To mitigate this threat, we took the diversity, representa-
tiveness, and popularity of the subjects into account in our subject
selection process. The six libraries focus on di�erent tasks of data
science and are extremely popular among data science practitioners.
Stack Over�ow is the largest and most active online community
for programmers, while GitHub is the mainstream platform for
software development and version control.

We used performance-related keywords and code mentions to de-
tect performance concerns for target APIs. However, this approach
could not detect valid performance-related sentences that contain
no prede�ned keywords and no explicit code mentions. Such false
negatives may a�ect our quantitative observations. Nonetheless,
the primary goal of this work is to study the documentation practice,
in particular the knowledge types, information consistency, and
evolution patterns, on performance concerns, rather than report-
ing all possible instances of such kind. The current methodology
already detects su�cient amount of data for that purpose.

We proposed two taxonomies of performance-related documen-
tation in Table 2 and Table 7. Admittedly, there could be other ways
of categorizing the knowledge types and evolution reasons of per-
formance concerns. To minimize this threat, we adapted related tax-
onomies of API documentation proposed in previous work [27, 38]
rather than creating the taxonomies from scratch. Multiple human
coders also iteratively adjusted the taxonomies. These processes
helped improve the reliability and generality of our taxonomies.

Our study results might be a�ected by human subjectivity, which
is a risk inherent in qualitative coding [13]. However, as described in
Section 3.2, manual work is crucial for the type of tasks in this work.
We followed the common research practice on manual labeling by
inviting multiple experienced human raters and reporting the inter-
rater agreement [23, 27]. Our results are also released for public
scrutiny [41].

6 RELATEDWORK
In this section, we discuss related work in the �elds of API perfor-
mance and API documentation.

API Performance: Performance of APIs and API usages has
been studied in di�erent domains. For Java applications, Kawrykow
and Robillard observed cases where API call sequences can be
replaced by more e�cient ones [22]. Oliveira et al. proposed an

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin

Table 7: Reasons for updating performance concerns in the o�cial documentation.

Reason Description Example (di�)
API design
change

Updating the documentation to re�ect changes
of API designs or API signatures (e.g., a new pa-
rameter is added, a function is renamed, a new
algorithm is applied, etc.).

For small datasets, ’liblinear’ is a good choice, whereas ’sag’ is faster
for large ones.
For small datasets, ’liblinear’ is a good choice, whereas ’sag’ and
’saga’ are faster for large ones. (Scikit-learn commit 5147fd09)

Add details* Adding new information that is absent from the
previous version.

This function is most e�cient when ’n’ is a power of two.
This function is most e�cient when ’n’ is a power of two , and least
ef�cient when ’n’ is prime. (SciPy commit e9250710)

Clari�cation Explicitly clarifying unclear concepts or provid-
ing supplementary notes, with only minor seman-
tic changes and better understandability.

Provide this parameter to greatly speed up �nite di�erence Jacobian
estimation, if it’s significantly sparse.
Provide this parameter to greatly speed up �nite di�erence Jacobian
estimation, if it has only few non-zeros in *each* row.
(SciPy commit ad664040)

Update refer-
ence*

Updating the reference or �xing broken links. . . .will greatly speed up the computations [10].
. . .will greatly speed up the computations [2].
(SciPy commit 5ab0947e)

Fix spelling* Fixing spelling problems. ’lbgfs’ can converge faster and perform better.
’lbfgs’ can converge faster and perform better.
(Scikit-learn commit 79011904)

Fix gram-
mar*

Fixing grammatical errors. . . .which is generally faster as ”iterrows”.
. . .which is generally faster than ”iterrows”.
(Pandas commit 89f04daa)

Fix wrong
info

Fixing incorrect or misleading information. slower but more accurate alternative to NNDSVDa for dense NMF.
faster, less accurate alternative to NNDSVDa for dense NMF.
(Scikit-learn commit eaced83a)

Formatting* Changing only the tabs, whitespaces, and
markups to follow documentation conventions.

Allow overwriting data in ’a’ (may enhance performance).
Allow overwriting data in ”a” (may enhance performance).
(SciPy commit �48839a)

Improve �u-
ency*

Rephrasing the sentence to improve the presen-
tation (e.g., word choices), typically with little or
no semantic change.

Whether data in a is overwritten (may improve performance).
Whether to overwrite data in a (may improve performance).
(SciPy commit c8ba75aa)

Move Moving the sentence to another location. The
sentence itself is not changed.

(Di� is omitted for presentation concerns)
(TensorFlow commit 9dc48f95)

Remove
details

Removing notes and explanations that are unnec-
essary, obsolete, or expose too much details.

if ’True’, use a faster, fused implementation based on
nn.fused_batch_norm.
if ’True’, use a faster, fused implementation if possible.
(TensorFlow commit d2cf3938)

*Reasons rephrased from [38].

approach that uses energy pro�les and static analysis to recom-
mend energy-e�cient alternatives for Java collection implementa-
tions [29]. For Android apps, Linares-Vásquez et al. found energy
bugs caused by suboptimal API choices [24]. Liu et al. identi�ed
performance issues caused by the misuses of the list scrolling API
and wakelock APIs [25, 26]. Das et al. studied performance-related
commits in Android apps and identi�ed the most predominant
types of performance-related changes [17]. For JavaScript programs,
Selakovic and Pradel found ine�cient API usage to be the most
common root cause of performance issues [37]. For Rails applica-
tions, Yang et al. reported that half of the performance issues can
be improved by changing how the Rails APIs are used [46]. Our
work is di�erent in that we study how API performance concerns
are documented and we focus on the domain of data science.

Knowledge in Documentation: Researchers have studied the
knowledge and information o�ered by software documentation
from various perspectives. Pascarella and Bacchelli explored the
code comments in Java projects and manually derived a hierarchi-
cal taxonomy of code comments in terms of their semantic mean-
ings [33]. Hata et al. studied the content and evolution patterns
of links in source code comments [21]. Prana et al. conducted a
qualitative study to categorize the content of GitHub README
�les [35]. Li et al. mine API documentation using NLP techniques
to build knowledge graphs of API caveats [23]. Maalej and Robil-
lard proposed a taxonomy of knowledge types in the API docu-
mentation of Java SDK 6 and .NET 4.0 [27], which also inspires
our taxonomy of knowledge types in performance concerns (see
Section 2.3). However, previous studies tend to focus on the general

Understanding Performance Concerns in the API Documentation of Data Science Libraries ASE ’20, September 21–25, 2020, Virtual Event, Australia

content of API documentation, while our study focuses exclusively
on performance-related content in the documentation.

Research has also suggested that crowdsourced knowledge can
aid various software development activities. Regarding API un-
derstanding and usages, Petrosyan et al. used text classi�cation
to discover information that explains a given API but is scattered
in online tutorials [34]. Treude and Robillard proposed a machine
learning approach that classi�es informative sentences from Stack
Over�ow to augment API documentation [43]. In this paper, we
observed that o�cial and crowd documentation complement each
other in terms of performance-related information.

DocumentationQuality:While software documentation greatly
supports development activities, research has also found quality is-
sues in documentation. Several studies combined program analysis
and natural language processing techniques to detect inconsisten-
cies between source code and documentation [40, 45, 48, 49], with
the inconsistencies typically revealing incorrect or outdated in-
formation. Unlike these studies, our work compares performance
concerns extracted from o�cial documentation and crowd doc-
umentation. The reliability of crowdsourced data has also been
studied. For example, Zhang et al. found that one third of SO posts
contain potential API misuses [47]. Chen et al. found that a large
proportion of security implementations on SO is insecure, and that
the corresponding posts have higher scores and more duplicates
compared to posts with secure suggestions [15]. In the future, we
also plan to investigate the quality of uno�cial performance-related
information from crowdsourced data.

7 CONCLUSION
In this work, we present an empirical study on how performance
concerns are documented in data science libraries. A nontrivial
proportion of data science APIs was found to be discussed in
performance-related context in the o�cial and crowd documenta-
tion, indicating the prevalence of such problems. By quantitatively
and qualitatively comparing the performance concerns extracted
from these two types of data sources, we found that crowd docu-
mentation is highly complementary to o�cial documentation in
terms of the API coverage, the knowledge types, and the speci�c
information being provided. We also observed that the maintenance
on performance-related documentation is relatively plateauing and
peripheral given the active evolution of their subject APIs. Our
�ndings shed light on the current state of a�airs for performance-
related documentation practice, which could be an important step
towards building e�cient data science applications.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their construc-
tive suggestions and comments. This work was partially supported
by the National Natural Science Foundation of China under Grants
No. 61972260, 61772347, 61836005, 61932021, 61802164, and the
Guangdong Basic and Applied Basic Research Foundation under
Grant No. 2019A1515011577.

REFERENCES
[1] [n.d.]. Gensim. https://radimrehurek.com/gensim/
[2] [n.d.]. GitHub REST API v3. https://developer.github.com/v3/
[3] [n.d.]. NumPy. http://www.numpy.org/.
[4] [n.d.]. pandas. https://pandas.pydata.org/.
[5] [n.d.]. Project Jupyter. https://jupyter.org/
[6] [n.d.]. Python Docstring. https://www.python.org/dev/peps/pep-0257/
[7] [n.d.]. Python inspect - Inspect live objects. https://docs.python.org/3/library/

inspect.html.
[8] [n.d.]. Scikit-learn. https://scikit-learn.org/stable/index.html.
[9] [n.d.]. The SciPy library. https://www.scipy.org/scipylib/index.html.
[10] [n.d.]. spaCy: Industrial-Strength Natural Language Processing. https://spacy.io/
[11] [n.d.]. Stack Exchange API v2.2. https://api.stackexchange.com/docs
[12] Eduardo C. Campos, Lucas B. L. Souza, and Marcelo de A. Maia. 2016. Searching

Crowd Knowledge to Recommend Solutions for API Usage Tasks. J. Softw. Evol.
Process 28, 10 (Oct. 2016), 863–892.

[13] Yanto Chandra and Liang Shang. 2019. Qualitative research using R: A systematic
approach. Springer.

[14] Cong Chen and Kang Zhang. 2014. Who Asked What: Integrating Crowdsourced
FAQs into API Documentation. In Companion Proceedings of the 36th International
Conference on Software Engineering (Hyderabad, India) (ICSE Companion 2014).
Association for Computing Machinery, New York, NY, USA, 456–459.

[15] Mengsu Chen, Felix Fischer, Na Meng, Xiaoyin Wang, and Jens Grossklags. 2019.
How reliable is the crowdsourced knowledge of security implementation?. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE,
536–547.

[16] Barthélémy Dagenais and Martin P Robillard. 2012. Recovering traceability links
between an API and its learning resources. In 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 47–57.

[17] Teerath Das, Massimiliano Di Penta, and Ivano Malavolta. 2016. A quantitative
and qualitative investigation of performance-related commits in android apps.
In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 443–447.

[18] Vasant Dhar. 2013. Data science and prediction. Commun. ACM 56, 12 (2013),
64–73.

[19] Martín Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. http://tensor�ow.org/ Software available from tensor�ow.org.

[20] Davide Fucci, Alireza Mollaalizadehbahnemiri, and Walid Maalej. 2019. On using
machine learning to identify knowledge in API reference documentation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 109–119.

[21] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019.
9.6 Million Links in Source Code Comments: Purpose, Evolution, and Decay. In
Proceedings of the 41st International Conference on Software Engineering (ICSE’19).
IEEE Press, 1211–1221.

[22] David Kawrykow and Martin P Robillard. 2009. Detecting ine�cient API usage.
In 2009 31st International Conference on Software Engineering-Companion Volume.
IEEE, 183–186.

[23] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving api caveats accessibility by mining api caveats
knowledge graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 183–193.

[24] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Rocco Oliveto,
Massimiliano Di Penta, and Denys Poshyvanyk. 2014. Mining Energy-greedy
API Usage Patterns in Android Apps: An Empirical Study. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR 2014). ACM, 2–11.

[25] Yepang Liu, Chang Xu, and Shing-Chi Cheung. 2014. Characterizing and Detect-
ing Performance Bugs for Smartphone Applications. In Proceedings of the 36th
International Conference on Software Engineering (Hyderabad, India) (ICSE 2014).
ACM, New York, NY, USA, 1013–1024. https://doi.org/10.1145/2568225.2568229

[26] Yepang Liu, Chang Xu, Shing-Chi Cheung, and Jian Lü. 2014. Greendroid: Au-
tomated diagnosis of energy ine�ciency for smartphone applications. IEEE
Transactions on Software Engineering 40, 9 (2014), 911–940.

[27] WalidMaalej andMartin P Robillard. 2013. Patterns of knowledge inAPI reference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–
1282.

[28] Mary McHugh. 2012. Interrater reliability: The kappa statistic. Biochemia medica :
časopis Hrvatskoga društva medicinskih biokemičara / HDMB 22 (10 2012), 276–82.
https://doi.org/10.11613/BM.2012.031

[29] Wellington Oliveira, Renato Oliveira, Fernando Castor, Benito Fernandes, and
Gustavo Pinto. 2019. Recommending Energy-e�cient Java Collections. In Proceed-
ings of the 16th International Conference on Mining Software Repositories (Montreal,
Quebec, Canada) (MSR ’19). IEEE Press, Piscataway, NJ, USA, 160–170.

[30] Carlos E Otero and Adrian Peter. 2014. Research directions for engineering big
data analytics software. IEEE Intelligent Systems 30, 1 (2014), 13–19.

[31] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin

Saman Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
End-to-End Optimization for Data Analytics Applications in Weld. Proc. VLDB
Endow. 11, 9 (May 2018), 1002–1015.

[32] Chris Parnin and Christoph Treude. 2011. Measuring API Documentation on the
Web. In Proceedings of the 2nd International Workshop on Web 2.0 for Software En-
gineering (Waikiki, Honolulu, HI, USA) (Web2SE’11). Association for Computing
Machinery, New York, NY, USA, 25–30.

[33] Luca Pascarella and Alberto Bacchelli. 2017. Classifying code comments in Java
open-source software systems. In 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR). IEEE, 227–237.

[34] Gayane Petrosyan, Martin P Robillard, and Renato De Mori. 2015. Discovering
information explaining API types using text classi�cation. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1. IEEE, 869–879.

[35] Gede Artha Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu, and
David Lo. 2019. Categorizing the Content of GitHub README Files. Empirical
Softw. Engg. 24, 3 (June 2019), 1296–1327. https://doi.org/10.1007/s10664-018-
9660-3

[36] Martin P. Robillard and Robert Deline. 2011. A Field Study of API Learning
Obstacles. Empirical Softw. Engg. 16, 6 (Dec. 2011), 703–732.

[37] Marija Selakovic and Michael Pradel. 2016. Performance Issues and Optimiza-
tions in JavaScript: An Empirical Study. In Proceedings of the 38th International
Conference on Software Engineering (Austin, Texas) (ICSE ’16). ACM, New York,
NY, USA, 61–72. https://doi.org/10.1145/2884781.2884829

[38] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. 2011. An empirical study on
evolution of API documentation. In International Conference on Fundamental
Approaches To Software Engineering. Springer, 416–431.

[39] Megan Squire. 2015. "Should We Move to Stack Over�ow?" Measuring the Utility
of Social Media for Developer Support. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 2. IEEE, 219–228.

[40] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*icomment:
Bugs or Bad Comments?*/. SIGOPS Oper. Syst. Rev. 41, 6 (Oct. 2007), 145–158.
https://doi.org/10.1145/1323293.1294276

[41] Yida Tao, Jiefang Jiang, Yepang Liu, Zhiwu Xu, and Shengchao Qin. 2020. Dataset
for "Understanding Performance Concerns in the API Documentation of Data Science

Libraries". https://doi.org/10.5281/zenodo.3972069
[42] Yida Tao, Shan Tang, Yepang Liu, Zhiwu Xu, and Shengchao Qin. 2019. How do

api selections a�ect the runtime performance of data analytics tasks?. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 665–668.

[43] Christoph Treude and Martin P Robillard. 2016. Augmenting api documentation
with insights from stack over�ow. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 392–403.

[44] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov.
2014. How Social Q&A Sites Are Changing Knowledge Sharing in Open Source
Software Communities. In Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing (Baltimore, Maryland, USA)
(CSCW ’14). ACM, New York, NY, USA, 342–354.

[45] Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-
scale empirical study on code-comment inconsistencies. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). IEEE, 53–64.

[46] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. How Not to Structure Your Database-backed Web Applications: A Study of
Performance Bugs in the Wild. In Proceedings of the 40th International Conference
on Software Engineering (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY,
USA, 800–810. https://doi.org/10.1145/3180155.3180194

[47] Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan, and
Miryung Kim. 2018. Are Code Examples on an Online Q&A Forum Reliable? A
Study of API Misuse on Stack Over�ow. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE’18). Association
for Computing Machinery, New York, NY, USA, 886–896. https://doi.org/10.
1145/3180155.3180260

[48] Hao Zhong and Zhendong Su. 2013. Detecting API documentation errors. In
Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented
programming systems languages & applications. 803–816.

[49] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 27–37.

