
RESEARCH ARTICLE

Verifying BPEL-like programs with Hoare logic

Chenguang LUO (*)1, Shengchao QIN1, Zongyan QIU2

1 Department of Computer Science, Durham University, Durham DH1 3LE, UK

2 LMAM and Department of Informatics, School of Mathematical Sciences, Peking University, Beijing 100871, China

E Higher Education Press and Springer-Verlag 2008

Abstract TheWS-BPEL language has recently become a

de facto standard for modeling Web-based business pro-

cesses. One of its essential features is the fully program-

mable compensation mechanism. To understand it better,

many recent works have mainly focused on formal

semantic models for WS-BPEL. In this paper, we make

one step forward by investigating the verification problem

for business processes written in BPEL-like languages. We

propose a set of proof rules in Hoare-logic style as an

axiomatic verification system for a BPEL-like core lan-

guage containing key features such as data states, fault

and compensation handling. We also propose a big-step

operational semantics which incorporates all these key

features. Our verification rules are proven sound with

respect to this underlying semantics. The application of

the verification rules is illustrated via the proof search

process for a nontrivial example.

Keywords WS-BPEL, compensation mechanism, opera-

tional semantics, axiomatic verification system, soundness

1 Introduction

The Internet is now developing at a high speed supported

by the web technology. As a result, many web-based

applications, such as Web services, begin to flourish and

play a more and more significant role in various applica-

tion areas. Web services boost a new approach to the

construction of business processes where many basic func-

tions are encapsulated and provided as individual services

on the web, which later may be composed to form com-

plex services according to diverse clients’ demands. To

cater for the description of Web service composition,

researchers and industrial practitioners have proposed

several Web service orchestration languages such as

XLANG [1], WSFL [2], StAC [3], and WS-BPEL [4,5].

Among these orchestration languages, WS-BPEL has

now become a de facto standard. One important feature

of WS-BPEL, as well as of some other similar languages,

is its mechanism for supporting long run transactions

(LRTs). In any single step of an LRT, a fault may occur

and appropriate compensation actions may be required.

To address such demand, WS-BPEL provides a set of

scope-based fault handling and compensation mechan-

isms to deal with faults and potential undoing of some

already completed business activities. The compensation

mechanisms are fully programmable, and thus allow users

to define any application-specific compensation rules.

Nevertheless, these mechanisms, despite very flexible

and powerful, also bring intricacies into the WS-BPEL

language specification. As a result, it becomes a challen-

ging issue to formalize and reason about WS-BPEL pro-

cesses.

Many recent works focused mostly on the formal

semantics for WS-BPEL, e.g. [6–10]. These pioneering

works are very important for reducing possible ambiguity

in the language specification and also for better under-

standing of the language. In this paper we will target at

an orthogonal but equally important problem, the partial

correctness of WS-BPEL processes. To make the pre-

sentation simple, we shall focus on a subset of WS-

BPEL. However, our core language will take into account

most of the important language features of WS-BPEL,

including data state, fault handling and compensation

mechanism.We will design a concise yet novel operational

semantics for our language, and propose a Hoare logic

style verification system on top of it, which will be proven

sound with respect to the underlying semantics. Due to the

complexity of web-based business processes, the correct-

ness of such programs remains a challenge. Our verifica-

tion system for BPEL-like language makes one step

forward towards tackling this challenging problem. To

the best of our knowledge, this is the first axiomatic veri-

fication system for a language with data states, scope-

based fault and compensation handling mechanisms.

The main contributions of this paper can be summarized

as follows:

Received July 19, 2008; accepted September 26, 2008

E-mail: {chenguang.luo, shengchao.qin}@durham.ac.uk,
zyqiu@ pku.edu.cn

Front. Comput. Sci. China 2008, 2(4): 344–356
DOI 10.1007/s11704-008-0039-2

N We propose a concise yet novel operational semantics

for a BPEL-like core language. Although there are

some semantic works with similar topics, our semantics

is interesting in that it integrates features like scopes,

data states, fault handling and compensation in a very

simple way.

N We design an assertion language for specifying certain

safety properties for BPEL-like processes, and also

propose a set of axioms and inference rules in Hoare

logic style to form an axiomatic verification system for

the language. The pre- and post-conditions are for-

mulas expressed in our assertion language.

N We state and prove the soundness of our axiomatic

verification system with respect to the semantics.

That is, provable specifications are all semantically

valid. A nontrivial example is presented to illustrate

the application of the verification rules.

The remainder of this paper is organized as follows.

Section 2 introduces our language BPEL* which is a core

subset of WS-BPEL. A new operational semantics for

BPEL* is then presented in Section 3. Section 4 is devoted

to the Hoare logic style verification system for BPEL*.

Section 5 deals with the soundness of our verification

system, while Section 6 gives a nontrivial example proof

using our verification system. Related works and conclud-

ing remarks follow afterwards.

2 The BPEL* language

To concentrate on the main aim of this study, we take into

account a core subset of the WS-BPEL language, called

BPEL*, which comprises not only the important fault and

compensation handling mechanisms but also data states

of WS-BPEL processes.

The abstract syntax of BPEL* is given in Fig. 1. Note

that a program written in BPEL* is called a business pro-

cess (denoted asBP) whichmay contain an activityA and a

fault handler F. We may sometimes use the general term

process to refer to an activityA, a compensation handlerC,

or a fault handler F. The set of all processes is denoted asP.

In Fig. 1, x and y stand for variable names, e represents

arithmetic expressions, b is for boolean expressions, and n

for scope names. A denotes a general activity, while C and

F are for compensation and fault handlers, respectively. It

is worth noting that the compensation activity jDn can only

appear in these two constructs.

Generally a business process has an activity to perform

its normal work, and once an error occurs it uses the fault

handler to deal with it. As for a general activity, the skip
does nothing to a process, and an assignment simply

overwrites a variable’s value to user’s intention.

The inv, rec and rep constitute our abstract model of

communication with external Web services. The a here is

an abstraction of call port of someWeb service beyond the

current process we are interested in. In our work we have

taken a most general web model, where ‘‘a’’ is assumed to

have some arbitrary behavior as far as the current busi-

ness process is concerned, as it either returns an arbitrary

value or fails. It is also possible to take more specialized

models, which is out of the consideration of this paper.

The throw throws a fault to prevent any other activity in

the current scope from being processed, until the end of

the business process, or it is captured somewhere by a

fault handler.

The A || A is a simplification of activities’ parallel com-

position (flow). To focus more on the novel aspects of

WS-BPEL, including the fault and compensation hand-

ling, we put some restrictions over this construct so that

links between its components (i.e. additional control-flow

restrictions) are disallowed in BPEL*. We can do so

because this issue is almost orthogonal to our focus in this

paper and it has already been well investigated by

researchers, e.g. [11,12].

Inside a scope n: {A ?C : F},A is the normal activity,C is

the compensation handler, and F is the fault handler. In

BPEL*, we assume all names for variables defined in a

business process are distinct, so are the scope names.

This is just for simplicity and does not lose generality as

we can easily achieve this by a pre-processing step. Under

such assumptions, we can refer to a variable or a scope

simply by its name, with no need of mentioning its enclos-

ing context. We also assume that the processes under con-

sideration have been statically checked to meet certain

basic well-formed conditions. For instance, the compensa-

tion activity jDn will only occur in the immediate enclosing

scope of the scope n.

3 Dynamic semantics

In this section, we propose a big-step operational semant-

ics for BPEL*. The semantics not only serves as a runtime

model for the language, but also acts as a reference

Fig. 1 The syntax of BPEL*

Front. Comput. Sci. China, 2008, 2(4) 345

semantics in the soundness proof for our axiomatic veri-

fication system. In what follows, we will define the run-

time states used for the semantics and then depict the

semantic rules.

3.1 Runtime states

The nontrivial business processes need often to support

long-running transactions (LRTs), where the exceptional

faults are unavoidable, and as a result the partially com-

pleted tasks may need to be revoked accordingly. This

kind of processes is hard to describe without language

support. WS-BPEL deals with this necessity with its scope

and compensation mechanism, which can be invoked to

reverse partially completed transactions. Since a fault may

happen from time to time, the WS-BPEL specification

advocates to keep records of state snapshots for the suc-

cessfully completed scopes, as the associated compensa-

tion handlers may refer to such completion states when

the compensation is invoked. Our semantics will record

those successfully completed scope snapshots in the run-

time state, similar to the way used in Qiu et al. [6] for

recording compensation closures. To facilitate the hand-

ling of faults, we also instrument the runtime state with a

boolean value to indicate whether the current state is a

normal state or a faulty one. The formal notations we use

are as follows:

f [Status ~df fail, normf g
s [Val ~df VarIValue

a, d, . . . ,d½ � [CPCtx~df seq CPCl

d, Sn,s,aT [CPCl ~df ScopeN|Val|CPCtx

s, f ,s,að Þ [S ~df Status|Val|CPCtx

In the semantic model, a runtime state s5 (f,s,a) is

composed of three elements, where f indicates whether

the current state is normal (f5 norm) or of a fault

(f5 fail), and s records current snapshot for the values

of all variables in the process. The third element a is the

compensation context used to record the state snapshots

and relative compensation information for successfully

completed scopes.

When a compensation activity jDn runs, the code to be

executed (i.e. the compensation handler defined in scope

n) is statically determined. However, the behavior of the

compensation will depend on not only the scope snapshot

of n, but also the dynamic execution of the normal activity

in scope n that yields the state snapshot. This is due to the

fact that (1) the current compensation may invoke com-

pensation handlers from the immediate sub-scopes of n, so

its behavior will depend on whether or not each of the sub-

scopes has completed successfully (thus the associative

compensation handler has been installed), and (2) such

information is determined dynamically during the

execution of the normal activity of scope n. To record such

information along with the scope snapshot, we define the

compensation context a as a (possibly empty) sequence of

compensation closures [d1,d2,…,dn], whereby a compensa-

tion closure di5 Sn,s,a1T is a nested structure which

records the state snapshot s for scope n (i.e., the data state

at the end of the normal execution of scope n). The third

element a1 is the compensation context accumulated dur-

ing the execution of the normal activity of scope n. It

includes all the compensation closures for those normally

completed immediately-enclosed sub-scopes. When the

compensation handler of n is invoked, both the scope

snapshot s and the enclosed context a1 are restored for

the compensation activity.

We do not record the handlers in the context as such

information can be statically determined for a given busi-

ness process. Instead, we assume the availability of a map-

ping to fetch the corresponding handlers:

C : ScopeN?P

where ScopeN is the set of scope names. For a valid scope

name n [dom Cð Þ, C nð Þ [P is the compensation handler

defined in scope n.

We will make use of standard sequence operators given

below (where a15 [d1,…,dm] and a2~ d’1, . . . ,d’n½ �):
d0:a1 ~ d0,d1, . . . ,dm½ �
hd a1ð Þ~ d1

tl a1ð Þ ~ d2, . . . ,dm½ �
a1La2~ d1, . . . ,dm,d1’, . . . ,dn’½ �

We define a membership relation as follows:

d [a ~df

false if a~½ �
true if hd að Þ~d

d [tl að Þ else

8><
>:

d 6 [a ~df : d [að Þ
Based on it we can define the following analogous rela-

tion:

n [a ~df As,a1:Sn,s,a1T [a
n6 [a ~df : n [að Þ

where n is a scope name and a is a compensation context.

Informally, n [a indicates that the compensation handler

for the scope n has been installed (and hence n’s scope

snapshot appears in a).

3.2 Operational semantics

In this subsection, we present the semantic rules for the

processes in BPEL*. The big-step operational semantics

for BPEL* is defined by a set of rules of the form

SA, sTVs’

346 Chenguang LUO, et al., Verifying BPEL-like programs with Hoare logic

where A is a process, while s and s9 denote the initial and
final states, respectively.

When a fault has occurred, the process to be executed

will do nothing but propagate the fault. The rule below

describes this scenario:

s~ fail,s,að Þ
SA, sTVs

The following rules define the behavior of skip, assign-
ment, and throw activities from normal states:

Sskip, norm,s,að ÞTV norm,s,að Þ
Sx :~e, norm,s,að ÞTV norm,s+ x.s eð Þf g,að Þ

Sthrow, norm,s,að ÞTV fail,s,að Þ

where s+ s9 is a state formed by s and s9:

s+s’ð Þ xð Þ~df

s’ xð Þ when x [dom s’

s xð Þ otherwise

�

With s(e) to denote the value of expression e under state

s, the skip and assignment are analogous to normal imper-

ative language. The throw here changes the process faulty

state to fail immediately, resulting in its propagation to all

following activities until the end of the enclosing scope or

the whole business process, where it will be dealt with by

the fault handler.

When synchronized communication activity inv a x y

succeeds, the value received from a, the other end of com-

munication, is assigned to y, while failed communication

also makes the process fail.

Sinv a x y, norm,s,að ÞTV norm,s+ y.nf g,að Þ
Sinv a x y, norm,s,að ÞTV fail,s,að Þ

where n is the value achieved through the communication.

The rules for the one-way communications rec a y and

rep a x are as follows:

Srec a y, norm,s,að ÞTV norm,s+ y.nf g,að Þ
Srec a y, norm,s,að ÞTV fail,s,að Þ

Srep a x, f ,s,að ÞTV(f ,s,a)

Note that the one-way communications provide an

invocation mechanism for external Web services. The

rec a y is used to retrieve parameters from other Web

services (a). Its effect is to update variable y using the

value received from the external Web service. On the con-

trary, the rep a x replies to other external Web services (a)

with the value of x. Thus its effect is just like a skip to the

current process.

Rules for sequence and conditional activities are

routine:

SA1, norm,s,að ÞTV f1,s1,a1ð Þ
SA2, f1,s1,a1ð ÞTV f2,s2,a2ð Þ

SA1;A2, norm,s,að ÞTV f2,s2,a2ð Þ

s bð Þ~true SA1, norm,s,að ÞTV f1,s1,a1ð Þ
Sif b then A1 else A2, norm,s,að ÞTV f1,s1,a1ð Þ

s bð Þ~false SA2, norm,s,að ÞTV f1,s1,a1ð Þ
Sif b then A1 else A2, norm,s,að ÞTV f1,s1,a1ð Þ

The rule for the parallel composition is as follows:

s1,s2ð Þ~split s,Var A1ð Þ,Var A2ð Þð Þ
SA1, norm,s1,½ �ð ÞTV f1, s’1 ,a1ð Þ
SA2, norm,s2,½ �ð ÞTV(f2, s’2 ,a2)

f ’~f1 ^ f2 s’~ s’1 ^ s’2 a’~interleave a1,a2ð ÞLa

SA1 kA2, norm,s,að ÞTV f ’,s’,a’ð Þ

where the splitting of variable mappings is based on the

separation of variable names:

split s,Var A1ð Þ,Var A2ð Þð Þ~df

x1.e1 x1 [Var A1ð Þjf ^ x1.e1 [sð g
x2.e2j x2 [Var A2ð Þ ^ x2.e2 [sf gÞ

in which Var(A1)>Var(A2)5 Ø. And for f1 and f2, f1‘ f2
is defined as

f1 ^ f2 ~df

norm,if f1~norm and f2~norm;

fail,otherwise:

�

The initial sub-states s1 and s2 are obtained from the

overall state s via a splitting operation whose definition is

straightforward given that A1 and A2 do not share vari-

ables, i.e., Var(A1)>Var(A2)5 Ø. The function interleave

(a1,a2) returns a merged sequence of a1 and a2 by arbit-

rarily interleaving elements of a1 and a2:

interleave a1,a2ð Þ ~df d1,d2, . . . ,dmzn½ �

where we denote a15 [d1,1,d1,2,…,d1,m] and a25 [d2,1,
d2,2,…d2,n], and then the following holds: di [a1La2,
i5 1,2,…,m + n; ;1(i, j(m + n, if di, dj [a1, di5 d1,s
and dj5 d1,t, then s, t; and the same condition for a2.

The execution of a scope n: {A ?C : F} may result in two

different situations: the execution of Amay complete suc-

cessfully or raise a fault. For the former, the compensation

handler will be installed by adding the compensation clos-

ure into the compensation context. For the latter, the fault

handler is invoked instead.

SA, norm,s,½ �ð ÞTV norm,s1,a1ð Þ s’~s1sV (n)

Sn : A ? C : Ff g, norm,s,að ÞTV norm,s1,Sn,s’,a1T:að Þ

Front. Comput. Sci. China, 2008, 2(4) 347

SA, norm,s,½ �ð ÞTV fail,s1,a1ð Þ
SF , norm,s1,a1ð ÞTV f2,s2,a2ð Þ

Sn : A ? C : Ff g, norm,s,að ÞTV f2,s2,a2ð Þ
HereV(n) denotes the set of local variables of scope n, and

s1

q

V(n) takes the part of state local to n, which is the snap-

shot of scope n when it completes execution.

Note that the scope is the only part in the model to deal

with faults. Once a fault is propagated from an activity A

to its enclosing scope, it will be caught by the relevant fault

handler F. If the fault handler of the immediately enclos-

ing scope of A throws the fault again rather than com-

pletes the handling, the fault continues its propagation to

the next fault handler, or meets the end of the process.

This is elaborated in the rules defined above.

Next comes the definition of compensation. According

to the WS-BPEL Specification [4], our compensation

looks for the installed compensation closure of corres-

ponding scope, removes it from the compensation context

and runs its handler. If the closure is not installed, the

invocation behaves like a skip. Since we have actually

accumulated the compensation contexts, it turns out sim-

ple to execute the handler as below:

n 6[a
Sn, norm,s,að ÞTV norm,s,að Þ

s~ norm,s,a1L Sn,s’,bT½ �La2ð Þ
SC nð Þ, norm,s+s’,bð ÞTV f1,s1,cð Þ

Sn, sTV f1,s1,a1La2ð Þ
Note that n1 a, defined in last section, means that the

compensation handler for n is not installed (hence the

closure for n does not appear in a).

The rules for the whole business process are as follows:

SA, sTV norm,s1,a1ð Þ
S A : Fj jf g, sTV norm,s1,a1ð Þ

SA, sTV fail,s1,a1ð Þ
SF , norm,s1,a1ð ÞTV f2,s2,a2ð Þ
S A : Fj jf g, sTV f2,s2,a2ð Þ

There is no top-level compensation handler in the business

process because no one could invoke it if there were any.

4 An axiomatic system for BPEL*

As a first step to support mechanized verification for

BPEL* processes, we propose in this section a set of infer-

ence rules in the style of a Floyd-Hoare logic.

4.1 Assertion language

To specify properties forBPEL* processes, apart from the

usual logical operations, we shall make use of some logical

constructs that are specific for compensation related

reasoning. The syntax for the assertion language Assn is:

P [Assn

P ::~ true falsej j normal x8*ej j*P P [j jPsV j
Pzn P{nj jPXn P�nj jPkP P ? Pj jP � P j
:P P ^ Pj jP _ P P[Pj

Note that x, e and n denote a variable name, an expression

and a scope name, respectively. The [, denotes a rela-

tional operator in {5,,,.,(,>}.

In the axiomatic system, each assertion is viewed as a set

of states that satisfy the assertion. The semantics for all

assertions is given in Fig. 2.

Among all assertion constructs, true and false are mod-

eled as the whole and empty sets of states, respectively.

Semantics for normal contains all states without fault.

Assertion x[,e can be in forms x, e, x5 e, x. e and so

forth, to model the relationship between variable x and

expression e.

To facilitate the description, we use here (and below)s.i
to denote the i-th element of tuple s. For instance, given

s5 (f,s,a), we will have s.15 f, s.25 s and s.35 a. In the

definition, n [s.3, defined in last section, denotes that the

compensation handler for scope n is installed in s. We also

use three operations to extract information w.r.t. scope n

from compensation context a:

Fig. 2 Semantics for assertions

348 Chenguang LUO, et al., Verifying BPEL-like programs with Hoare logic

firstof n,sð Þ ~df norm,s:2+s,bð Þ
if s:3~a1L Sn,s,bT½ �La2 ^ n 6 [a1

before n,að Þ ~df

a, if n 6 [a
a1, if a~a1L Sn,s,bT½ �La2 ^ n 6 [a1

�

after(n,a) ~df

½ �, if n 6 [a
a2, if a~a1L Sn,s,bT½ �La2 ^ n 6 [a1

�

Operation firstof(n,s) extracts from a5 s.3 the first state

snapshot for n, and merges it with s.2. In the case n1 s.3,
firstof(n,s) is undefined. before(n,a) returns the largest

prefix of a which contains no closure for scope n, and

after(n,a) returns the sub-sequence of a after the first clos-
ure for scope n, or the empty sequence when there is no

such closure in a.

Among the semantics for the assertions, some relating

to flow, scope, and compensation are worth illustration.

The assertions P q

V and P||Q are used in verification of

flow constructs. In the first one, V is a set of variables and

P q

V restricts the domain of variable mapping s.2 (where

s [|[P]|) to V. For example, (x. 0‘ y(0) q

{x}5 x. 0.

The second one, P||Q, enumerates all possible interleaving

cases of compensation contexts of states in |[P]| and

|[Q]|, respectively.

The following assertions mainly concern scope and

compensation. ,P reverses all the faulty states in each

s [|[P]| (from norm to fail and vice versa). This corre-

sponds to the verification of throw activity and fault

handler which change the process faulty state. P[reserves

the first and second components of states but empties their

compensation contexts. This is useful for verifying scopes

whose inner activity A begins with empty compensation

context.

Assertion P+n extracts each state s from set |[P]|, sets its

compensation context to the closure Sn, s.2 q

V(n),s.3T, and
forms a new set with all of these states.

As its form suggests, P2n performs an ‘‘elimination’’ of

scope name n ‘‘from’’ the elements in |[P]|. It extracts first

the compensation context a from each state of |[P]|, then

finds the first compensation closure with name n, and

removes it to form a new context a. If there is no such

closure found, then a will be the original context. The

semantics of P2n is the set of states with these newly

formed a.

What PXn does is, informally, to ‘‘restrict’’ |[P]| to the set

of states in which the compensation context contains a

closure with name n, P*n ‘‘locates’’ the first occurrence

of the closure with name n in each state in |[P]|, and forms

a set of states from these closures.

P Q and P*Q are for compensation contexts concat-

enation and replacement between assertions, respectively.

The first appends the compensation contexts within Q’s

model to those of P’s, to accumulate new compensation

closure based on old ones, according to scope’s behavior.

The second discards directly the compensation contexts of

the states in P’s semantics, because of the manner of com-

pensation handlers.

An assertion is modeled as a set containing all the states

which satisfy it. Thus we define

s � P~df s [P½ �j j:
A specification in our system takes the ordinary form

{P}A{Q}, where P,Q [Assn and A [P is an activity.

One thing notable is that a business process may com-

municate via activities inv, rec and rep with external pro-

cesses, which are essentially other Web services within the

same application or from third party. As a result, whether a

business process behaves in a desired way might depend on

the external processes being interacted with. Hence, a busi-

ness process is more like an open system which makes the

verification problem rather challenging. Our proposal is to

verify each business process separately according to certain

dependency order in the first step. We assume that specifi-

cations for communication activities are available in the

verification of one business process. When all relevant busi-

ness processes have been verified separately, we can then

check the consistency of all the assumptions made on com-

munication activities. In this paper, we focus only on the

verification of individual business processes.

Remembering that in the operational semantics for

communications with external Web services, we have

addressed that their behaviors can be arbitrary, either to

deliver a value or to fail. However, to verify a business

process involving communications more precisely, we

need to put more restrictions over semantics of the com-

munications. These restrictions take the form of a set of

specifications {P}c{Q}, where each c is any one of inv a x

y, rec a y, or rep a x, representing a communication that

might be executed by the process with the environment.

We useT to denote a set of such specifications and use it as

a context of the verification rules. For example, for a

specification {P}inv a x y {Q} [T, the precondition P acts

as an assertion imposed on the current process to ensure

that information sent out (the value of x) satisfies the

requirement of the environment, while Q acts as an

assumption made on the environment: the result sent back

by the environment (final value of y) satisfies the con-

straint described by Q, with possible substitutions of the

communication channel and variable names.

The proof rules in our verification system are of the

form C,T w {P} A {Q}, where C, defined earlier, is the

mapping from scope names to associated compensation

handlers, and T is the set of specifications defined above.

We shall now present the syntax-directed proof rules in

our logic.

4.2 Consequence rules

The only structural rule in our axiomatic system is

the consequence rule for precondition weakening and

Front. Comput. Sci. China, 2008, 2(4) 349

post-condition strengthening:

P[P’ C,T ‘ P’f g A Q’f g Q’[Q

C,T ‘ Pf g A Qf g conseqð Þ

4.3 BPEL*-specific rules

The rules for skip and assignment are simple:

C,T ‘ Pf g skip Pf g skipð Þ
C,T ‘ nomal ^ P e=x½ �f g x :~e Pf g assignð Þ

The rule for throw is clear too:

C,T ‘ Pf g throw :normal ^ P _*Pð Þf g throwð Þ

Here we do not need to care whether the pre-condition is

normal, because the type of fault is not in the range of our

current consideration.

For the basic communication activities, the rules need

to use their assumed specifications in T. For the conveni-

ence of description, we assume the variable names in the

pre- and post-conditions are correspondent with those

used in the invocations. Meanwhile, as is stated in former

section, in the verification of the process, a triple {P}A{Q}

in T can also be used to verify a triple whose pre- and

post-condition have the same denotation of compensa-

tion contexts, such as {P R}A{Q R}. And in this situ-

ation it must be guaranteed that the denotations of

compensation contexts in both pre- and post-condition

are the same.

If the environment can be modeled as a subset of

normal, then rec sets the variable’s value to what the spe-

cification denotes. Or it just propagates the fault.

normalf g rec a v Qf g [T
:normal[Q v=y½ �

C,T ‘ truef g rec a y Q v=y½ �f g recð Þ

where Q [v/y] is an assertion formed by substituting each

occurrence of v in Q by y, for filling the gap between the

specification inT and the current process. Because of rep’s
analogous behavior to skip, its rule is also the same.

C,T ‘ Pf g rep a x Pf g repð Þ
The semantics of two-way invocation is simple:

Pf g inv a u v Qf g [T
C,T ‘ fPg inv a x y Q u,v=x,y½ �f g invð Þ

Note that these rules depend on T, the set of specifications

assumed on communication activities.

The rules for control structures are as follows:

:normal ^ P[Q

C,T ‘ normal ^ Pf g A Rf g
C,T ‘ Rf g B Qf g

C,T ‘ Pf g A; B Qf g seqð Þ

:normal ^ P[Q

C,T ‘ normal ^ P ^ bf g A Qf g
C,T ‘ normal ^ P ^ :bf g B Qf g
C,T ‘ Pf g if b then A else B Qf g ifð Þ

where b is a boolean expression of the form x[,e.

Since we assume that the different parallel flows

share no variables, the rule for the parallel structures is

given as

:normal ^ P[Q1kQ2ð Þ ? P
C,T ‘ P [sV1

� �
A Q1f g

C,T ‘ P [sV2

� �
B Q2f g

C,T ‘ Pf g A B Q1kQ2ð Þ ? Pf gk flowð Þ

where V1 and V2 are disjoint variable sets and A and B

only modify variables in V1 and V2, respectively.

Now we present the two most significant rules, which

reveal the essential features of our language. The rule for

scopes is as follows:

:normal ^ P[Q

C,T ‘ normal ^ P [f g A Rf g
normal ^ Rð Þzn ? P[Q

C,T ‘ * :normal ^ Rð Þf g F Qf g
C,T ‘ Pf g n : A ? C : Ff g Qf g scopeð Þ

Note that the rule (scope) captures two cases. One stands

for the scenario where a fault occurs in A. In that case the

control transfers to the fault handler, and the compensa-

tion handler for scope n is not installed. The other is for

the normal completion of A and the concatenation of this

scope’s compensation context to the process state.

Then the most intricate rule in our system, the named

compensation, comes as follows:

:normal ^ P[Q

:PXn ^ P[Q

C,T ‘ PXn
� �

�n
n o

C nð Þ Rf g
R � P{n[Q

C,T ‘ Pf g n Qf g compensateð Þ

In this rule, the behavior of a named compensation is

depicted with the relevant compensation handler. If the

pre-condition does not entail a scope name n, the post-

condition must be automatically satisfied. Otherwise, the

snapshots’ set (as the pre-condition for the compensation

350 Chenguang LUO, et al., Verifying BPEL-like programs with Hoare logic

handler) is extracted and the post-condition is a combina-

tion of the fault and variable mapping states after the

handler’s execution, and the compensation context with

the elimination of the first compensation closure named n.

Last is the rule for the whole business process:

C,T ‘ Pf g A Rf g
normal ^ Rð Þ[Q

C,T ‘ * :normal ^ Rð Þf g F Qf g
C,T ‘ Pf g A : Fj jf g Qf g bpð Þ

5 Soundness

This section is devoted to the soundness of our verification

system. We will first give two definitions and then form-

alize the soundness theorem and its proof.

Definition 5.1 (Validity) We denote that a triple {P} A

{Q} is valid under C,T, i.e. C,T� {P}A{Q}, if for all s [S,
if s�P and SA, sTV s9 for some s9, then s9�Q.

Definition 5.2 (Soundness) Our verification system for

BPEL* is sound if all provable specifications are indeed

valid, that is, if C,Tw {P}A{Q}, then C,T� {P}A{Q}.

The theorem for soundness can be stated as below:

Theorem 5.1 The Hoare logic for BPEL* presented in

this paper is sound.

As is indicated by Definition 5.2 above, we need to

show that, for any P, A, Q, if C,Tw {P}A{Q}, then C,T
� {P}A{Q}. The proof can be accomplished by structural

induction over A.

Proof The verification of C,Tw {P}A{Q} (denoted as t)

can be a process such as

some premisesð Þ
..
.

� � � � � �

some other premisesð Þ
..
.

� � �
C,T ‘ Pf g A Qf g

From the perspective of backwards reasoning, a rule r

should be utilized on t according to A’s structure, and from

this rule some other premises need to be verified with sim-

ilar backward verifications until all the premises are axioms

or known facts. As an illustration, if A is C,Tw{P}{|A1:F1|}

{Q}, then we must verify C,T w {P}A{R},(normal‘R)

)Q and C,T w {,(

q normal‘R)}F{Q}, according to

the (bp) rule. Hence the last rule r used to verify t depends

on the structure of the activity A. Therefore, the follow-

ing cases are organized according to the structure of A,

which is equivalent to r to some extent.

N Case (skip). The last rule r for this is (skip):

C,T ‘ Pf g skip Pf g
Since Sskip, sTV s, it is easy to see that rule (skip) is

sound in our system.

N Case (x :5 e). The corresponding rule is (assign):

C,T ‘ normal ^ P e=x½ �f gx :~e Pf g
The proof for rule (assign) simply follows the canonical

Hoare logic’s proof using the Substitution Theorem

and thus is omitted here.

N Case (throw). The last rule to apply is (throw):

C,T ‘ Pf g throw :normal ^ P _*Pð Þf g
Take any s such that s�P. If s.15 fail, then we have

Sthrow, sTV s9 and s� q normal‘P. Otherwise, if

s.15 norm, then we have Sthrow, sTV s9 where

s95 (fail, s.2, s.3), and s9� q normal‘,P. So we get

C,T� {P}throw{ q normal‘ (P~,P)}.

N Case (rec a y).

normalf g rec a v Qf g [T
:normal[Q v=y�½

C,T ‘ truef g rec a y Q v=y½ �f g
For the proof of the rule (rec), if s� normal, then since

{normal} rec a v {Q} is already known for the com-
munication, the model of post-condition Q [v/y] should

contain the final state transited from s (either (norm,
s.2+ {y |̈ v},s.3) or (fail, s.2, s.3), according to the

communication’s behavior). Otherwise if s� q normal,
then from the semantics for

q normal)Q [v/y] we know

s�Q [v/y]. Therefore we conclude in this case.

N Case (rep a x).

C,T ‘ Pf g rep a x Pf g
Since the communication of reply does not change the

process status, rule (rep) shares the same proof of skip’s.

N Case (inv a x y).

Pf g inv a u v Qf g [T
C,T ‘ Pf g inv a x y Q u,v=x,y½ �f g

The proof can be completed in the similar way as that of

rec a y.

N Case (A; B). The rule applied in this case is (seq):

:normal ^ P[Q

C,T ‘ normal ^ Pf g A Rf g
C,T ‘ Rf g B Qf g

C,T ‘ Pf g A; B Qf g

Front. Comput. Sci. China, 2008, 2(4) 351

The proof for rule (seq) is classical, except that the faulty

state is taken into consideration first. That is, for any state

s�P, if s.15 fail, then s� q normal‘P and thus s�Q.

If not, then take s* as SA, sTVs*, we have s*�R. And

from SB, s*TVs9 and the inductive assumption, it holds

that s9�Q.

N Case (if b then A else B). In this case the condition rule

(if) is applied:

:normal ^ P[Q

C,T ‘ normal ^ P ^ bf g A Qf g
C,T ‘ normal ^ P ^ :bf g B Qf g
C,T ‘ Pf g if b then A else B Qf g

Theproofof the condition rule is also similaras theclassical

one. Except for the abnormal state, consider any s where

s.15norm. Then no matter whether s� normal‘P‘b

or s� normal ‘P‘ q

b, for some s9 and s* that SA,
sTVs9 in the first case and SB, sTVs* in the second,

we always get s9�Q and s*�Q from inductive assump-

tion.

N Case (A||B). The last rule used is (flow):

:normal ^ P[Q1kQ2ð Þ ? P
C,T ‘ P [sV1

� �
A Q1f g

C,T ‘ P [sV2

� �
B Q2f g

C,T ‘ Pf g AkB Q1kQ2ð Þ ? Pf g
Take any s� normal‘P (the case for s.15 fail is like
other rules), from the premises and the inductive

assumption we know that SA, s:1,s:2ss1 ,½ �
� �

TVs’1
and SB, s:1,s:2ss2 ,½ �

� �
TVs’2, for some s’1 � Q1,

s’2 � Q2. Hence s’1:1 ^ s’2:1,s’1:2^s’2:2, interleaveð
s’1:3,s’2:3ð ÞLs:3Þ � Q1kQ2ð Þ ? P, and thus we con-

clude in this case.

N Case (n: {A ?C : F}). Rule (scope) is the last rule applied

in the proof for C, T w {P} n: {A ? C : F} {Q}:

:normal ^ P[Q

C,T ‘ normal ^ P [f g A Rf g
normal ^ Rð Þzn ? P[Q

C,T ‘ * :normal ^ Rð Þf g F Qf g
C,T ‘ Pf g n : A ? C : Ff g Qf g

The following cases are discussed for all s�P.

- If s.15 fail, from inductive assumption and the pre-

mise

q normal‘P)Q, we have s� q normal‘P,

and thus s�Q.
- If s.15 norm, then take s[5 (s.1, s.2, []), and hence

we have s� q normal‘P[. With inductive assump-

tion and the premise, denoting s’ [as SA, s [TVs’[,
then s’ [� R is achieved.

- If s’ [:1~norm, then s’ [� normal ^ R,

and s’zn~ s’[:1,s’[:2,Sn,s’[:2sV (n),s’[:3T
� �

� normal ^ Rð Þzn, and still s’~ s’zn:1,ð s’z
n:2,s’z [:3:s:3Þ � normal ^ Rð Þzn ? P. We get

s9�Q from the last implication.

- If s’ [:1~fail, then s’F � * :normal ^ Rð Þ
where s’F~ norm,s’ [:2,s’ [:3ð Þ. From the

inductive assumption and the semantics

SF , s’FTVs’ for some s9, we have s9�Q.
This completes our proof for scope.

N Case (jDn):

:normal ^ P[Q

:PXn ^ P[Q

C,T ‘ PXn
� �

�n
n o

C nð Þ Rf g
R � P{n[Q

C,T ‘ Pf g n Qf g
For the rule of compensation, consider any s�P in the

following cases.

- If s.15 fail, then directly we have s�Q.

- If s.1? fail and there are no compensation closures

named n in s’s compensation context, then s �
:PXn ^ P by definition, and thus s�Q which con-

forms to the operational semantics.

- Otherwise, we need to run the compensation handler

named n. Denote sn5 firstof(n, s), and we have

sn � PXn
� �

�n and hence SC nð Þ, snTVs’n for some s’n,
while s’n � R. Then take s~ f ,s,a1L Sn,s�,bT½ �ð
La2Þ, and we have s’~ s’n:1,s’n:2,a1La2ð Þ � R�
P{n, and thus s9�Q. From all discussion above,

we conclude this case.

N Case ({|A:F|}). The last rule applied in the proof for the

whole business process will be the rule (bp):

C,T ‘ Pf g A Rf g
normal ^ Rð Þ[Q

C,T ‘ * :normal ^ Rð Þf g F Qf g
C,T ‘ Pf g A : Fj jf g Qf g

N It is similar as the scope rule with compensation hand-

ler eliminated. For any s�P and SA, sTV s9 for some

s9 there are the following two cases:

- s9.15norm. From (normal‘R))Q, we know that

s9�Q.

- s9.15 fail. If SF, (norm,s9.2,s9.3)TV s* for some s*,

then we have s*�Q from the premise C,T ‘ *f
:normal ^ Rð Þg F Qf g.

N Besides the aforesaid A’s possible structures directly

related to rules, sometimes we may be not able to verify
C,Tw {P} A {Q} with an existing rule but can verify C,
Tw {P9}A{Q9} where P9 is weaker than P and/or Q9 is
stronger than Q. Thus the structural rule (conseq) is

352 Chenguang LUO, et al., Verifying BPEL-like programs with Hoare logic

employed in such cases:

P[P’ C,T ‘ P’f g A Q’f g Q’[Q

C,T ‘ Pf g A Qf g
For all s�P and SA,sTV s9 for some s9, we have s�

P9 from P)P9 and also SA,sTV s* for some s*�Q9.
Then from Q9)Q we get s*�Q. Hence s* is the s9 we
need and the proof for this rule is completed.

Above are all the cases of our structural induction, and

each of them is proven to be sound. Hence this completes

our proof for the soundness.

6 Example

In this section a purchase example is exhibited to illustrate

the verification of a real business process, which is a modi-

fied version of that in [13].

The general flow of the example is as follows. First the

process receives price for each single item (stored in vari-

able p) and class of the customer from other service with

communication (into variable y). Then it decides the dis-

count ratio according to the customer class, and receives

the amount of items to store in t. After having all the items

purchased, it computes the shipping fare according to the

value of t. At last the real average price (including ship-

ping cost) for each item is calculated and replied, which

may incur fault and hence call for compensation.

This business process, denoted as BP, is written in

BPEL* below.

jf
n1 : rec a p; q :~p ? p :~{p : skipf g;
rec b y;

if y~1 then

n2 : p :~p|0:5 ? p :~p|2 : skipf g
else

n3 : p :~p|0:8 ? p :~p|1:25 : skipf g;
n4 : rec c t; p :~p|t ? p :~p=t : skipf g;

if tw500 then

n5 : p :~pz500 ? p :~p{500 : skipf g
else

n6 : p :~pzt ? p :~p{t : skipf g;
if tw0 then p :~p=t; rep d p else throw

: n6; n5; n4; n3; n2; n1

jg

The specification for us to verify is {normal}BP{Q} where

Q is p5 q/2 + 500/t~ p5 0.8q + 500/t~ p5 q/2 + 1~ p5
0.8q + 1~ p52q. The first four parts of the disjunctions

in Q present the different situations of discount ratio and

shipping fare, while the last p52q is the case where a

fault is compensated. This specification states that, if BP

starts in a normal state and terminates at last, it should

establish the post-condition Q, provided that the specifi-

cations of the communication activities are as follows:

normalf g rec a y normal ^ yw0f g
normalf g rec b y normal ^ y~1 _ y~2ð Þf g

normalf g rec c y normal ^ y=0f g
Here we give an outline of the verification for BP with

the backwards searching strategy. First, for the whole

business process, we use the rule of bp to get three sub-

goals G1, G2, G3 for further verification:

G1 : C,T ‘ normalf g A Rf g
G2 : normal ^ Rð Þ[Q

G3 : C,T ‘ * :normal ^ Rð Þf g F Qf g

where A stands for the codes before the last : in the pro-

cess, Q is the post-condition we want to verify, F repre-

sents the six compensations (jDn6; jDn5; jDn4; jDn3; jDn2; jDn1),

and R should be both strong enough to derive Q and still

sufficiently weak as F’s precondition to get Q. A possible

R can be the assertion below:

normal ^ p~q=2z500=t _ p~0:8qz500=t_ðð
p~q=2z1 _ p~0:8qz1ÞÞ _ :normal ^*P6ð Þ

where P6 is

normal^
tƒ500ð [y~1[p~0:5qtztð Þ^ðð

y=1[p~0:8qtztð ÞÞzn5
^

tw500[y~1[p~0:5qtz500ð Þð ^
y=1[p~0:8qtz500ð ÞÞzn6

Þ ? P5)

where P5 stands for the set of states for compensation

accumulated in the previous execution of the process,

from a semantics perspective (and so are the other asser-

tions to be depicted below); its definition is

normal ^ ð y~1[p~0:5qtð Þ ^ y=1[p~0:8qtð Þð Þzn4
? P4Þ

where P4 is

normal ^ ðððy~1[p~0:5qð Þzn2
^

ðy=1[p~0:8qð Þzn3
ÞÞ ? P2Þ

where P2 is

normal ^ p~qð Þzn1
? normal

and the semantics and the derivations of these assertions will

be introduced in the following descriptions. With them as

bridges we will try to verify the three sub-goals separately.

Front. Comput. Sci. China, 2008, 2(4) 353

For the first sub-goal G1, it can still be divided into six

sub-goals, since A is a sequence made up of six other

activities, including two scopes, one basic communication

activity and three conditional judgments. We will denote

these activities asA1,A2, …,A6 according to their original

orders in BP, and call these six sub-goals G1,i, i5 1, 2, …,

6, defined as below:

G1,i : C,T ‘ Pif g Ai Piz1f g

where i5 1, 2, …, 6, P15 normal and P75R. (Note that

the P2, …, P5 are what have been described above.) We

will demonstrate the verification of each sub-goal.

For G1,1, since A1 is the scope n1 and the precondition is

normal, we will use the scope rule to divide it further into

three sub-goals:

G1,1,1 : normal [f g rec a p; q :~p P1,1f g
G1,1,2 : normal ^ P1,1ð Þzn1

? normal[P2

G1,1,3 : * :normal ^ P1,1ð Þf g skip P2f g

For the first sub-goal, the rules seq, rec and assign are

used, to get that P1,1 is normal‘ p5 q. With this result

and the second sub-goal the strongest P2 is derived as

normal ^ p~qð Þzn1
? normal. For the third sub-goal,

since q normal‘P1,15 false, it holds automatically.

Then G1,1 is verified with the post-condition P2, that is,

normal ^ p~qð Þzn1
? normal.

Next we will examineG1,2. Here the rule of rec is applied

to P2 and rec b y, with the result of post-condition P3

which is (y5 1~ y5 2)‘P2.

Sub-goal G1,3 concerns the first if construct of the pro-
cess, and its verification is an application of rule ifwith the

result of two other sub-goals

G1,3,1 : C,T ‘ normal ^ P3 ^ y~1f g A1,3 P4f g
G1,3,2 : C,T ‘ normal ^ P3 ^ :y~1f g B1,3 P4f g

where A1,3 and B1,3 are scopes n2 and n3, respectively.

They can be verified similarly as n1 (using rules scope

and assign), and we get the post-condition P4:

normal ^ q~X^
ððy~1[p~0:5qð Þzn2

^
y=1[p~0:8qð Þzn3

Þ ? P2Þ

G1,4 is to verify the Hoare triple for scope n4. Follow-

ing similar way of G1,1 it can be verified with P5

as normal ^ ð y~1[p~0:5qtð Þ ^ y=1[p~0:8qtð Þð Þzn4
? PÞ.

G1,5 again seeks the verification of the second if con-
struct. With the approach like that of G1,3 (splitting it into

two subgoals) we can achieve P6:

normal^
tf500ð [y~1[p~0:5qtztð Þ^ðð

y=1[p~0:8qtztð ÞÞzn5
^

tw500[y~1[p~0:5qtz500ð Þ^ð
y=1[p~0:8qtz500ð ÞÞzn6

Þ ? P5)

The last subgoal, G1,6, is slightly different from the for-

mer two if’s. It is also first divided into two subgoals:

G1,6,1 : C,T ‘ normal ^ P6 ^ tw0f g p :~p=t; rep d p Rf g
G1,6,2 : C,T ‘ normal ^ P6 ^ :tw0f g throw Rf g

in which the first subgoal’s verification is as the former

ones, with the post-condition p5 q/2 + 500/t~ p5
0.8q + 500/t~ p5 q/2 + 1~ p5 0.8q + 1. (Note that we

omit the part for compensation and present a weaker

assertion here.) However, the second one uses the throw

rule to force a conjunction of q normal with the precondi-

tion. Therefore the whole post-condition for A, R, is as

follows:

normal ^ p~q=2z500=t _ p~0:8qz500=t_ðð
p~q=2z1 _ p~0:8qz1ÞÞ _ :normal ^*P6ð Þ

It is clear that a conjunction of normal and this R auto-

matically impliesQ, which is demanded in the subgoal G2.

So the remaining work is to verify the subgoal G3.

G3 equals to C, Tw {t, 0‘P6} F {Q}, where F is the

sequence of six compensations. Similarly, this can be

divided into six subgoals using the seq rule, and each

sub-goal is solved equally with rule compensate. We will

illustrate its usage with the first two compensations

for scopes n6 and n5, and the others are the same as these

two.

Since t, 0 implies that t(500, it can be deducted that

the compensation context for n6 must be installed, and

thus we have only two possible cases to consider (y5 1;

y? 1). We now take the first case as an example, in which

the precondition of these compensations can be reduced

as

normal ^ y~1 ^ tf500^
p~0:5qtztð Þzn6

? p~0:5qtð Þzn4
?

p~0:5qð Þzn2
? p~qð Þzn1

? normal

where we denote the as right-associative to prevent

excess parentheses. Using once the rule compensate we get

normal ^ y~1 ^ tf500^
p~0:5qtð Þzn4

? p~0:5qð Þzn2
?

p~qð Þzn1
? normal

to remove the compensation context of n6 from the states

(on the level of semantics).

354 Chenguang LUO, et al., Verifying BPEL-like programs with Hoare logic

Then for the sub-goal concerning n5, since in this case it

is not installed in the compensation context (which can be

seen from the structure of the assertion), its effect, due to

rule compensate, is like a skip.
Therefore we use the rule four times more on jDni,

i5 4…1 respectively, to verify each remaining subgoal

and gain the final assertion

normal ^ y~1 ^ tf500 ^ p~{q

which implies that p52q, and hence Q. This completes

the whole process’ verification.

7 Related works

The concept of compensation dates back to Sagas [14] and

nested transactions [15]. There are a few attempts to form-

alize workflow languages [3,16–18], and still many of them

are about compensation.

On the semantics of such languages there are many

investigations. Qiu et al. [6] provided a formal operational

semantics for a simplified version of BPEL4WS to specify

the execution path of a process with possible compensa-

tion behavior. In that work, they adopted an abridgment

of BPEL4WSwhich was followed by a series of works with

similar objective. Then they provided a formal semantics

for fault handling, compensations, and parallel processes

with respect to the original informal description by the

BPEL4WS Specification [19], with a clarification to some

of its elusive parts. Meanwhile they proved the complete-

ness of the deduction of their semantics. Besides their

work, there are still many others to formalize the semant-

ics of these languages from different perspectives. Bruni

et al. [20] presented an operational semantics for a series of

languages, which included the compensation concept. Pu

et al. [7] also presented an abridged edition of WS-BPEL,

discussed its operational semantics, and defined the equi-

valence between two processes with its proposed n-bi-

simulation. He et al. [9] focused on the process equivalence

from the perspective of an observation-orientedmodel and

its algebraic laws. Zhu et al. [10] made a link among dif-

ferent semantics (operational, denotational and algebraic)

of the WS-BPEL language with the approach of the uni-

fying theories of programming. Some of the semantics

proposed in these works may also be enhanced as suitable

underlying semantics for our verification system, while our

semantics is mainly distinguished from theirs in that it

incorporates variable mappings in both program runtime

states and compensation contexts, enabling concrete vari-

able valuations to be stored in the semantics.

Apart from the work on semantic models, researchers

have also tried to model and verify the WS-BPEL pro-

cesses. Duan et al. [21] introduced a logic model to form-

ally specify the semantics of workflow and its composite

tasks described as WS-BPEL abstract processes, and

made a deduction of the weakest precondition for work-

flow. Another work by Duan et al. [22] put some restric-

tions to such model and found an algorithm to proof the

abstract processes’ correctness. Fu et al. [23] proposed

some techniques and related tools to analyze interactions

of composite Web services written in BPEL4WS. The

BPEL4WS specifications [19] are first translated into an

intermediate representation, and then verified use SPIN

[24]. Hamadi and Benatallah [17] transformed the formal

semantics of the WS-BPEL composition operators to an

expression of Petri nets, and hence allowed the verifica-

tion of properties and the detection of inconsistencies

both within and between services. Pu et al. [25] adopted

a similar method by using model checker UPPAAL [26] to

verify the correctness of BPEL4WS program including

temporal properties. However, none of these works have

attempted in verifying WS-BPEL-like fault handling and

compensation as we have done in this paper.

8 Conclusions and future works

In this paper we proposed an axiomatic system to verify

the correctness of BPEL* processes. Here we have con-

centrated on an important core subset of WS-BPEL,

namely BPEL*. This subset reflects the key features of

the language appealing to us, say, fault states, variable

mappings and compensation contexts; meanwhile it keeps

our mechanism both precise and concise, rather than

builds up a huge and complicated system trying to cover

all aspects of WS-BPEL. We have formalized these fea-

tures into program runtime states, and created BPEL*’s

operational semantics with state transition rules, accord-

ing to the organization for the advancement of structured

information standards (OASIS) [4]. Based on this, we

have set up the assertions to abstract and express the novel

language features, leaving the Hoare triples for verifica-

tion and their semantics as a natural result. The verifica-

tion rules for BPEL* are also formalized after the

underlying operational semantics. With respect to such

semantics, we have proven the soundness of this system

by structural induction on BPEL*’s constructs, and pro-

vided an example as an illustration to the verification

process of our system.

Our possible future works following this mainly include

two aspects. The first is to extend the logic to cover more

language features of WS-BPEL. As our original intention

is to propose a concise yet novel system to verify WS-

BPEL’s fault handling and compensation mechanism,

we omitted some language constructs which may cause

the verification rule to be uncontrollable under current

model, say, partner links, all compensation activities

and while loops. These language features may require fur-

ther invention of verification techniques such as invar-

iants on compensation contexts, and are worth being a

Front. Comput. Sci. China, 2008, 2(4) 355

natural subsequence of our further work. The second

aspect aims at mechanizing the verification system for

practical use, which involves some kind of verification

condition generators to create the verification conditions,

some reasoners to discharge the produced sub-goals, and
some verification algorithm to integrate these together.

Acknowledgements We appreciate the precious comments from the
anonymous reviewers. This work was supported by the UK EPSRC
Project (Grant No. EP/E021948/1) and China National Natural Science
Fundation (Grant No. 60773161).

References

1. Thatte S. XLANG: web service for business process design.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.
htm, Microsoft, 2001

2. Leymann F. WSFL: web service flow language. http://www-4.ibm.
com/software/solutions/webservices/pdf/WSFL.pdf, IBM, 2001

3. Butler M, Ferreira C. An operational semantics for StAC, a
language for modelling long-running business transactions. In:
Proceedings of the 6th International Conference on
Coordination Models and Languages, Lecture Notes in
Computer Science, Vol 2949, Springer, 2004, 87–104

4. Alves A, Arkin A, Askary S, et al. web service business
process execution language version 2.0. http://docs.oasis-open.
org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, OASIS Standard, 2007

5. Barreto C, Bullard V, Erl T, et al. web service business
process execution language version 2.0 primer. http://docs.
oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html,OASIS
Standard, 2007

6. Qiu Z, Wang S, Pu G et al. Semantics of bpel4ws-like fault and
compensation handing. In: Proceedings of the 1st
International Symposium of Formal Methods Europe,
Lecture Notes in Computer Science, Vol 3582, Springer,
2005, 350–365

7. Pu G, Zhu H, Qiu Z et al. Theoretical foundation of scope-
based compensable flow language for web service. In:
Proceedings of the 1st International Conference on Formal
Methods for Open Object-Based Distributed Systems, Lecture
Notes in Computer Science, Vol 4037, Springer, 2006, 251–266

8. Qiu Z, Zhao X, Cai C et al. Towards the theoretical founda-
tion of choreography. In: Proceedings of the 6th International
World Wide Web Conference, ACM Press, 2007, 973–982

9. He J, Zhu H, Pu G. A model for bpel-like languages. Frontiers
of Computer Science in China. 2007, 1(1):9–19

10. Zhu H, He J, Li J et al. Algebraic approach to linking the
semantics of web services. In: Proceedings of the 5th IEEE
International Conference on Software Engineering and
Formal Method, 2007, 315–328

11. Xu Q, de Roever W P, He J. The rely-guarantee method for
verifying shared variable concurrent programs. Formal
Aspects of Computing, 1997, 9(2): 149–174

12. Zhu H. Linking the semantics of a multithreaded discrete
event simulation language. Dissertation for the Doctoral
Degree. London South Bank University, 2005

13. Fowler M, Scott K. UML distilled: a brief guide to the stand-
ard object modeling language. Addison-Wesley, 2000

14. Garcia-Molina H, Salem K. Sagas. In: Proceedings of the
Association for Computing Machinery Special Interest
Group on Management of Data Conference, ACM Press,
1987, 249–259

15. Moss J. Nested transactions: an approach to reliable distrib-
uted computing. Dissertation for the Doctoral Degree.
Massachusetts Institute of Technology, 1981

16. Analst W, Dumas M, Hofstede A, et al. Analysis of web ser-
vices composition languages: the case of bpel4ws. In:
Proceedings of the 22nd International Conference on
Conceptual Modeling, Lecture Notes in Computer Science,
Vol 2813. Springer, 2003, 200–215

17. Hamadi R, Benatallah B. A petri net-based model for web
service composition. In: Proceedings of the 14th
Australasian Database Conference, Vol 47, Adelaide,
Australia, 2003, 191–200

18. Brogi A, Canal C, Pimentel E et al. Formalizing web service
choreographies. Electronic Notes in Theoretical Computer
Science, 2004, 105: 73–94

19. Andrews T, Curbera F, Dholakia H, et al. Business process
execution language for web services 1.1. http://download.boul-
der.ibm.com/ibmdl/pub/software/dw/specs/WS-bpel.pdf, 2003

20. Bruni R, Melgratti H, Montanari U. Theoretical foundations
for compensations in flow composition languages. In:
Proceedings of the 32nd SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), New York,
USA, 2005, 209–220

21. Duan Z, Bernstein A, Lewis P et al. Semantics based verifica-
tion and synthesis of bpel4ws abstract processes. In:
Proceedings of the IEEE International Conference on Web
Services, 2004, 734–737

22. Duan Z, Bernstein A, Lewis P et al. A model for abstract
process specification, verification and composition. In:
Proceedings of the 2nd International Conference on Service
Oriented Computing, New York, USA, 2004, 232–241

23. Fu X, Bultan T, Su J. Analysis of interacting bpel web services.
In: Proceedings of the 13th International World Wide Web
Conference, ACM Press, 2004, 621–630

24. Holzmann G. The spin model checker:primer and reference
manual. Addison-Wesley, 2003

25. Pu G, Zhao S, Wang S. Towards the semantics and verifica-
tion of bpel4ws. In: Proceedings of the International
Workshop on Web Languages and Formal Methods
(WLFM), Electronic Notes in Theoretical Computer
Science, Vol 151, Elsevier, 2005, 33–52

26. Bengtsson J, Larsen K, Larsson F, et al. Uppaal-a tool suitable
for automatic verification of real-time systems. In:
Proceedings of the DIMACS/SYCON Workshop on Hybrid
Systems III: Verification and Control, Secaucus, New Jersey,
USA, New York: Springer, 1996, 232–243

356 Chenguang LUO, et al., Verifying BPEL-like programs with Hoare logic

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

